This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucdom2 | ⊢ ( 𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | brdomi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ≺ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 4 | vex | ⊢ 𝑓 ∈ V | |
| 5 | 4 | rnex | ⊢ ran 𝑓 ∈ V |
| 6 | f1f1orn | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
| 8 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → 𝑓 : 𝐴 –1-1→ ran 𝑓 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝑓 : 𝐴 –1-1→ ran 𝑓 ) |
| 10 | f1dom3g | ⊢ ( ( 𝑓 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓 : 𝐴 –1-1→ ran 𝑓 ) → 𝐴 ≼ ran 𝑓 ) | |
| 11 | 4 5 9 10 | mp3an12i | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ ran 𝑓 ) |
| 12 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 14 | ssdif0 | ⊢ ( 𝐵 ⊆ ran 𝑓 ↔ ( 𝐵 ∖ ran 𝑓 ) = ∅ ) | |
| 15 | simplr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 16 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 17 | 16 | frnd | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ran 𝑓 ⊆ 𝐵 ) |
| 18 | 15 17 | syl | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → ran 𝑓 ⊆ 𝐵 ) |
| 19 | simpr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → 𝐵 ⊆ ran 𝑓 ) | |
| 20 | 18 19 | eqssd | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → ran 𝑓 = 𝐵 ) |
| 21 | dff1o5 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ran 𝑓 = 𝐵 ) ) | |
| 22 | 15 20 21 | sylanbrc | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 23 | f1oen3g | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 24 | 4 22 23 | sylancr | ⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) ∧ 𝐵 ⊆ ran 𝑓 ) → 𝐴 ≈ 𝐵 ) |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( 𝐵 ⊆ ran 𝑓 → 𝐴 ≈ 𝐵 ) ) |
| 26 | 14 25 | biimtrrid | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐵 ∖ ran 𝑓 ) = ∅ → 𝐴 ≈ 𝐵 ) ) |
| 27 | 13 26 | mtod | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ¬ ( 𝐵 ∖ ran 𝑓 ) = ∅ ) |
| 28 | neq0 | ⊢ ( ¬ ( 𝐵 ∖ ran 𝑓 ) = ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐵 ∖ ran 𝑓 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ∃ 𝑤 𝑤 ∈ ( 𝐵 ∖ ran 𝑓 ) ) |
| 30 | snssi | ⊢ ( 𝑤 ∈ ( 𝐵 ∖ ran 𝑓 ) → { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) ) | |
| 31 | relsdom | ⊢ Rel ≺ | |
| 32 | 31 | brrelex1i | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ∈ V ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ V ) |
| 34 | vex | ⊢ 𝑤 ∈ V | |
| 35 | en2sn | ⊢ ( ( 𝐴 ∈ V ∧ 𝑤 ∈ V ) → { 𝐴 } ≈ { 𝑤 } ) | |
| 36 | 33 34 35 | sylancl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → { 𝐴 } ≈ { 𝑤 } ) |
| 37 | 31 | brrelex2i | ⊢ ( 𝐴 ≺ 𝐵 → 𝐵 ∈ V ) |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝐵 ∈ V ) |
| 39 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ ran 𝑓 ) ∈ V ) | |
| 40 | snfi | ⊢ { 𝑤 } ∈ Fin | |
| 41 | ssdomfi2 | ⊢ ( ( { 𝑤 } ∈ Fin ∧ ( 𝐵 ∖ ran 𝑓 ) ∈ V ∧ { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) ) → { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) | |
| 42 | 40 41 | mp3an1 | ⊢ ( ( ( 𝐵 ∖ ran 𝑓 ) ∈ V ∧ { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) ) → { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝐵 ∖ ran 𝑓 ) ∈ V → ( { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) → { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 44 | 38 39 43 | 3syl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) → { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 45 | endom | ⊢ ( { 𝐴 } ≈ { 𝑤 } → { 𝐴 } ≼ { 𝑤 } ) | |
| 46 | domtrfi | ⊢ ( ( { 𝑤 } ∈ Fin ∧ { 𝐴 } ≼ { 𝑤 } ∧ { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) | |
| 47 | 40 46 | mp3an1 | ⊢ ( ( { 𝐴 } ≼ { 𝑤 } ∧ { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) |
| 48 | 45 47 | sylan | ⊢ ( ( { 𝐴 } ≈ { 𝑤 } ∧ { 𝑤 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) |
| 49 | 36 44 48 | syl6an | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( { 𝑤 } ⊆ ( 𝐵 ∖ ran 𝑓 ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 50 | 30 49 | syl5 | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( 𝑤 ∈ ( 𝐵 ∖ ran 𝑓 ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 51 | 50 | exlimdv | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ∃ 𝑤 𝑤 ∈ ( 𝐵 ∖ ran 𝑓 ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 52 | 29 51 | mpd | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) |
| 53 | disjdif | ⊢ ( ran 𝑓 ∩ ( 𝐵 ∖ ran 𝑓 ) ) = ∅ | |
| 54 | 53 | a1i | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑓 ∩ ( 𝐵 ∖ ran 𝑓 ) ) = ∅ ) |
| 55 | undom | ⊢ ( ( ( 𝐴 ≼ ran 𝑓 ∧ { 𝐴 } ≼ ( 𝐵 ∖ ran 𝑓 ) ) ∧ ( ran 𝑓 ∩ ( 𝐵 ∖ ran 𝑓 ) ) = ∅ ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ran 𝑓 ∪ ( 𝐵 ∖ ran 𝑓 ) ) ) | |
| 56 | 11 52 54 55 | syl21anc | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( 𝐴 ∪ { 𝐴 } ) ≼ ( ran 𝑓 ∪ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 57 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 58 | 57 | a1i | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) ) |
| 59 | undif2 | ⊢ ( ran 𝑓 ∪ ( 𝐵 ∖ ran 𝑓 ) ) = ( ran 𝑓 ∪ 𝐵 ) | |
| 60 | 17 | adantl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ran 𝑓 ⊆ 𝐵 ) |
| 61 | ssequn1 | ⊢ ( ran 𝑓 ⊆ 𝐵 ↔ ( ran 𝑓 ∪ 𝐵 ) = 𝐵 ) | |
| 62 | 60 61 | sylib | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑓 ∪ 𝐵 ) = 𝐵 ) |
| 63 | 59 62 | eqtr2id | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → 𝐵 = ( ran 𝑓 ∪ ( 𝐵 ∖ ran 𝑓 ) ) ) |
| 64 | 56 58 63 | 3brtr4d | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑓 : 𝐴 –1-1→ 𝐵 ) → suc 𝐴 ≼ 𝐵 ) |
| 65 | 3 64 | exlimddv | ⊢ ( 𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵 ) |