This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucdom2 | |- ( A ~< B -> suc A ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | brdomi | |- ( A ~<_ B -> E. f f : A -1-1-> B ) |
|
| 3 | 1 2 | syl | |- ( A ~< B -> E. f f : A -1-1-> B ) |
| 4 | vex | |- f e. _V |
|
| 5 | 4 | rnex | |- ran f e. _V |
| 6 | f1f1orn | |- ( f : A -1-1-> B -> f : A -1-1-onto-> ran f ) |
|
| 7 | 6 | adantl | |- ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-onto-> ran f ) |
| 8 | f1of1 | |- ( f : A -1-1-onto-> ran f -> f : A -1-1-> ran f ) |
|
| 9 | 7 8 | syl | |- ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-> ran f ) |
| 10 | f1dom3g | |- ( ( f e. _V /\ ran f e. _V /\ f : A -1-1-> ran f ) -> A ~<_ ran f ) |
|
| 11 | 4 5 9 10 | mp3an12i | |- ( ( A ~< B /\ f : A -1-1-> B ) -> A ~<_ ran f ) |
| 12 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
| 13 | 12 | adantr | |- ( ( A ~< B /\ f : A -1-1-> B ) -> -. A ~~ B ) |
| 14 | ssdif0 | |- ( B C_ ran f <-> ( B \ ran f ) = (/) ) |
|
| 15 | simplr | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-> B ) |
|
| 16 | f1f | |- ( f : A -1-1-> B -> f : A --> B ) |
|
| 17 | 16 | frnd | |- ( f : A -1-1-> B -> ran f C_ B ) |
| 18 | 15 17 | syl | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f C_ B ) |
| 19 | simpr | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> B C_ ran f ) |
|
| 20 | 18 19 | eqssd | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f = B ) |
| 21 | dff1o5 | |- ( f : A -1-1-onto-> B <-> ( f : A -1-1-> B /\ ran f = B ) ) |
|
| 22 | 15 20 21 | sylanbrc | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-onto-> B ) |
| 23 | f1oen3g | |- ( ( f e. _V /\ f : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 24 | 4 22 23 | sylancr | |- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> A ~~ B ) |
| 25 | 24 | ex | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( B C_ ran f -> A ~~ B ) ) |
| 26 | 14 25 | biimtrrid | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ( B \ ran f ) = (/) -> A ~~ B ) ) |
| 27 | 13 26 | mtod | |- ( ( A ~< B /\ f : A -1-1-> B ) -> -. ( B \ ran f ) = (/) ) |
| 28 | neq0 | |- ( -. ( B \ ran f ) = (/) <-> E. w w e. ( B \ ran f ) ) |
|
| 29 | 27 28 | sylib | |- ( ( A ~< B /\ f : A -1-1-> B ) -> E. w w e. ( B \ ran f ) ) |
| 30 | snssi | |- ( w e. ( B \ ran f ) -> { w } C_ ( B \ ran f ) ) |
|
| 31 | relsdom | |- Rel ~< |
|
| 32 | 31 | brrelex1i | |- ( A ~< B -> A e. _V ) |
| 33 | 32 | adantr | |- ( ( A ~< B /\ f : A -1-1-> B ) -> A e. _V ) |
| 34 | vex | |- w e. _V |
|
| 35 | en2sn | |- ( ( A e. _V /\ w e. _V ) -> { A } ~~ { w } ) |
|
| 36 | 33 34 35 | sylancl | |- ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~~ { w } ) |
| 37 | 31 | brrelex2i | |- ( A ~< B -> B e. _V ) |
| 38 | 37 | adantr | |- ( ( A ~< B /\ f : A -1-1-> B ) -> B e. _V ) |
| 39 | difexg | |- ( B e. _V -> ( B \ ran f ) e. _V ) |
|
| 40 | snfi | |- { w } e. Fin |
|
| 41 | ssdomfi2 | |- ( ( { w } e. Fin /\ ( B \ ran f ) e. _V /\ { w } C_ ( B \ ran f ) ) -> { w } ~<_ ( B \ ran f ) ) |
|
| 42 | 40 41 | mp3an1 | |- ( ( ( B \ ran f ) e. _V /\ { w } C_ ( B \ ran f ) ) -> { w } ~<_ ( B \ ran f ) ) |
| 43 | 42 | ex | |- ( ( B \ ran f ) e. _V -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) |
| 44 | 38 39 43 | 3syl | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) |
| 45 | endom | |- ( { A } ~~ { w } -> { A } ~<_ { w } ) |
|
| 46 | domtrfi | |- ( ( { w } e. Fin /\ { A } ~<_ { w } /\ { w } ~<_ ( B \ ran f ) ) -> { A } ~<_ ( B \ ran f ) ) |
|
| 47 | 40 46 | mp3an1 | |- ( ( { A } ~<_ { w } /\ { w } ~<_ ( B \ ran f ) ) -> { A } ~<_ ( B \ ran f ) ) |
| 48 | 45 47 | sylan | |- ( ( { A } ~~ { w } /\ { w } ~<_ ( B \ ran f ) ) -> { A } ~<_ ( B \ ran f ) ) |
| 49 | 36 44 48 | syl6an | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
| 50 | 30 49 | syl5 | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
| 51 | 50 | exlimdv | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( E. w w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
| 52 | 29 51 | mpd | |- ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~<_ ( B \ ran f ) ) |
| 53 | disjdif | |- ( ran f i^i ( B \ ran f ) ) = (/) |
|
| 54 | 53 | a1i | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f i^i ( B \ ran f ) ) = (/) ) |
| 55 | undom | |- ( ( ( A ~<_ ran f /\ { A } ~<_ ( B \ ran f ) ) /\ ( ran f i^i ( B \ ran f ) ) = (/) ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) |
|
| 56 | 11 52 54 55 | syl21anc | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) |
| 57 | df-suc | |- suc A = ( A u. { A } ) |
|
| 58 | 57 | a1i | |- ( ( A ~< B /\ f : A -1-1-> B ) -> suc A = ( A u. { A } ) ) |
| 59 | undif2 | |- ( ran f u. ( B \ ran f ) ) = ( ran f u. B ) |
|
| 60 | 17 | adantl | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ran f C_ B ) |
| 61 | ssequn1 | |- ( ran f C_ B <-> ( ran f u. B ) = B ) |
|
| 62 | 60 61 | sylib | |- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f u. B ) = B ) |
| 63 | 59 62 | eqtr2id | |- ( ( A ~< B /\ f : A -1-1-> B ) -> B = ( ran f u. ( B \ ran f ) ) ) |
| 64 | 56 58 63 | 3brtr4d | |- ( ( A ~< B /\ f : A -1-1-> B ) -> suc A ~<_ B ) |
| 65 | 3 64 | exlimddv | |- ( A ~< B -> suc A ~<_ B ) |