This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submomnd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ oMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) | |
| 2 | omndtos | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → 𝑀 ∈ Toset ) |
| 4 | reldmress | ⊢ Rel dom ↾s | |
| 5 | 4 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑀 ↾s 𝐴 ) = ∅ ) |
| 6 | 5 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ∅ ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ∅ ) ) |
| 8 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 9 | 7 8 | eqtr4di | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ∅ ) |
| 10 | eqid | ⊢ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) | |
| 11 | eqid | ⊢ ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) | |
| 12 | 10 11 | mndidcl | ⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd → ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 13 | 12 | ne0d | ⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ≠ ∅ ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ≠ ∅ ) |
| 15 | 14 | neneqd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ¬ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ∅ ) |
| 16 | 9 15 | condan | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → 𝐴 ∈ V ) |
| 17 | resstos | ⊢ ( ( 𝑀 ∈ Toset ∧ 𝐴 ∈ V ) → ( 𝑀 ↾s 𝐴 ) ∈ Toset ) | |
| 18 | 3 16 17 | syl2anc | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ Toset ) |
| 19 | simplll | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑀 ∈ oMnd ) | |
| 20 | eqid | ⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 22 | 20 21 | ressbas | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 23 | inss2 | ⊢ ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) ⊆ ( Base ‘ 𝑀 ) | |
| 24 | 22 23 | eqsstrrdi | ⊢ ( 𝐴 ∈ V → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
| 25 | 16 24 | syl | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
| 27 | simplr1 | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) | |
| 28 | 26 27 | sseldd | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ 𝑀 ) ) |
| 29 | simplr2 | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) | |
| 30 | 26 29 | sseldd | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 31 | simplr3 | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) | |
| 32 | 26 31 | sseldd | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ 𝑀 ) ) |
| 33 | eqid | ⊢ ( le ‘ 𝑀 ) = ( le ‘ 𝑀 ) | |
| 34 | 20 33 | ressle | ⊢ ( 𝐴 ∈ V → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 35 | 16 34 | syl | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 37 | 36 | breqd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ 𝑀 ) 𝑏 ↔ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) ) |
| 38 | 37 | biimpar | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ( le ‘ 𝑀 ) 𝑏 ) |
| 39 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 40 | 21 33 39 | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ∧ 𝑐 ∈ ( Base ‘ 𝑀 ) ) ∧ 𝑎 ( le ‘ 𝑀 ) 𝑏 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 41 | 19 28 30 32 38 40 | syl131anc | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 42 | 16 | adantr | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → 𝐴 ∈ V ) |
| 43 | 20 39 | ressplusg | ⊢ ( 𝐴 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 45 | 44 | oveqd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
| 46 | 42 34 | syl | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
| 47 | 44 | oveqd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
| 48 | 45 46 47 | breq123d | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
| 50 | 41 49 | mpbid | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
| 51 | 50 | ex | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
| 52 | 51 | ralrimivvva | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ∀ 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
| 53 | eqid | ⊢ ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) | |
| 54 | eqid | ⊢ ( le ‘ ( 𝑀 ↾s 𝐴 ) ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) | |
| 55 | 10 53 54 | isomnd | ⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ oMnd ↔ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Toset ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) ) |
| 56 | 1 18 52 55 | syl3anbrc | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ oMnd ) |