This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submomnd | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. oMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. Mnd ) |
|
| 2 | omndtos | |- ( M e. oMnd -> M e. Toset ) |
|
| 3 | 2 | adantr | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> M e. Toset ) |
| 4 | reldmress | |- Rel dom |`s |
|
| 5 | 4 | ovprc2 | |- ( -. A e. _V -> ( M |`s A ) = (/) ) |
| 6 | 5 | fveq2d | |- ( -. A e. _V -> ( Base ` ( M |`s A ) ) = ( Base ` (/) ) ) |
| 7 | 6 | adantl | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) = ( Base ` (/) ) ) |
| 8 | base0 | |- (/) = ( Base ` (/) ) |
|
| 9 | 7 8 | eqtr4di | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) = (/) ) |
| 10 | eqid | |- ( Base ` ( M |`s A ) ) = ( Base ` ( M |`s A ) ) |
|
| 11 | eqid | |- ( 0g ` ( M |`s A ) ) = ( 0g ` ( M |`s A ) ) |
|
| 12 | 10 11 | mndidcl | |- ( ( M |`s A ) e. Mnd -> ( 0g ` ( M |`s A ) ) e. ( Base ` ( M |`s A ) ) ) |
| 13 | 12 | ne0d | |- ( ( M |`s A ) e. Mnd -> ( Base ` ( M |`s A ) ) =/= (/) ) |
| 14 | 13 | ad2antlr | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) =/= (/) ) |
| 15 | 14 | neneqd | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> -. ( Base ` ( M |`s A ) ) = (/) ) |
| 16 | 9 15 | condan | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> A e. _V ) |
| 17 | resstos | |- ( ( M e. Toset /\ A e. _V ) -> ( M |`s A ) e. Toset ) |
|
| 18 | 3 16 17 | syl2anc | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. Toset ) |
| 19 | simplll | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> M e. oMnd ) |
|
| 20 | eqid | |- ( M |`s A ) = ( M |`s A ) |
|
| 21 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 22 | 20 21 | ressbas | |- ( A e. _V -> ( A i^i ( Base ` M ) ) = ( Base ` ( M |`s A ) ) ) |
| 23 | inss2 | |- ( A i^i ( Base ` M ) ) C_ ( Base ` M ) |
|
| 24 | 22 23 | eqsstrrdi | |- ( A e. _V -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
| 25 | 16 24 | syl | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
| 26 | 25 | ad2antrr | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
| 27 | simplr1 | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a e. ( Base ` ( M |`s A ) ) ) |
|
| 28 | 26 27 | sseldd | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a e. ( Base ` M ) ) |
| 29 | simplr2 | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> b e. ( Base ` ( M |`s A ) ) ) |
|
| 30 | 26 29 | sseldd | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> b e. ( Base ` M ) ) |
| 31 | simplr3 | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> c e. ( Base ` ( M |`s A ) ) ) |
|
| 32 | 26 31 | sseldd | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> c e. ( Base ` M ) ) |
| 33 | eqid | |- ( le ` M ) = ( le ` M ) |
|
| 34 | 20 33 | ressle | |- ( A e. _V -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
| 35 | 16 34 | syl | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
| 36 | 35 | adantr | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
| 37 | 36 | breqd | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( le ` M ) b <-> a ( le ` ( M |`s A ) ) b ) ) |
| 38 | 37 | biimpar | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a ( le ` M ) b ) |
| 39 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 40 | 21 33 39 | omndadd | |- ( ( M e. oMnd /\ ( a e. ( Base ` M ) /\ b e. ( Base ` M ) /\ c e. ( Base ` M ) ) /\ a ( le ` M ) b ) -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) |
| 41 | 19 28 30 32 38 40 | syl131anc | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) |
| 42 | 16 | adantr | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> A e. _V ) |
| 43 | 20 39 | ressplusg | |- ( A e. _V -> ( +g ` M ) = ( +g ` ( M |`s A ) ) ) |
| 44 | 42 43 | syl | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( +g ` M ) = ( +g ` ( M |`s A ) ) ) |
| 45 | 44 | oveqd | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( +g ` M ) c ) = ( a ( +g ` ( M |`s A ) ) c ) ) |
| 46 | 42 34 | syl | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
| 47 | 44 | oveqd | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( b ( +g ` M ) c ) = ( b ( +g ` ( M |`s A ) ) c ) ) |
| 48 | 45 46 47 | breq123d | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) <-> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
| 49 | 48 | adantr | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) <-> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
| 50 | 41 49 | mpbid | |- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) |
| 51 | 50 | ex | |- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
| 52 | 51 | ralrimivvva | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> A. a e. ( Base ` ( M |`s A ) ) A. b e. ( Base ` ( M |`s A ) ) A. c e. ( Base ` ( M |`s A ) ) ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
| 53 | eqid | |- ( +g ` ( M |`s A ) ) = ( +g ` ( M |`s A ) ) |
|
| 54 | eqid | |- ( le ` ( M |`s A ) ) = ( le ` ( M |`s A ) ) |
|
| 55 | 10 53 54 | isomnd | |- ( ( M |`s A ) e. oMnd <-> ( ( M |`s A ) e. Mnd /\ ( M |`s A ) e. Toset /\ A. a e. ( Base ` ( M |`s A ) ) A. b e. ( Base ` ( M |`s A ) ) A. c e. ( Base ` ( M |`s A ) ) ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) ) |
| 56 | 1 18 52 55 | syl3anbrc | |- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. oMnd ) |