This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resstos | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tospos | ⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) | |
| 2 | resspos | ⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |
| 4 | eqid | ⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 6 | 4 5 | ressbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 7 | inss2 | ⊢ ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) ⊆ ( Base ‘ 𝐹 ) | |
| 8 | 6 7 | eqsstrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 10 | eqid | ⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) | |
| 11 | 5 10 | istos | ⊢ ( 𝐹 ∈ Toset ↔ ( 𝐹 ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 12 | 11 | simprbi | ⊢ ( 𝐹 ∈ Toset → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 14 | ssralv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) | |
| 15 | ssralv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) | |
| 16 | 15 | ralimdv | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 17 | 14 16 | syld | ⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 18 | 9 13 17 | sylc | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 19 | 4 10 | ressle | ⊢ ( 𝐴 ∈ 𝑉 → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 20 | 19 | breqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ) ) |
| 21 | 19 | breqd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
| 22 | 20 21 | orbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 23 | 22 | 2ralbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 25 | 18 24 | mpbid | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
| 26 | eqid | ⊢ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) | |
| 27 | eqid | ⊢ ( le ‘ ( 𝐹 ↾s 𝐴 ) ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) | |
| 28 | 26 27 | istos | ⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Toset ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 29 | 3 25 28 | sylanbrc | ⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Toset ) |