This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) | |
| 2 | ralss | ⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ) ) | |
| 3 | ralss | ⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑐 ∈ 𝑎 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝑋 ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) ) | |
| 4 | r19.21v | ⊢ ( ∀ 𝑐 ∈ 𝑎 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ) | |
| 5 | impexp | ⊢ ( ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) → 𝐸 ∈ 𝑎 ) ↔ ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) | |
| 6 | vex | ⊢ 𝑐 ∈ V | |
| 7 | vex | ⊢ 𝑏 ∈ V | |
| 8 | 6 7 | prss | ⊢ ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) ↔ { 𝑐 , 𝑏 } ⊆ 𝑎 ) |
| 9 | 8 | imbi1i | ⊢ ( ( ( 𝑐 ∈ 𝑎 ∧ 𝑏 ∈ 𝑎 ) → 𝐸 ∈ 𝑎 ) ↔ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
| 10 | 5 9 | bitr3i | ⊢ ( ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ↔ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑐 ∈ 𝑋 ( 𝑐 ∈ 𝑎 → ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ↔ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
| 12 | 3 4 11 | 3bitr3g | ⊢ ( 𝑎 ⊆ 𝑋 → ( ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 14 | 2 13 | bitrd | ⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 15 | 1 14 | syl | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 16 | 15 | rabbiia | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
| 17 | riinrab | ⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } | |
| 18 | 16 17 | eqtr4i | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } = ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) |
| 19 | mreacs | ⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) | |
| 20 | riinrab | ⊢ ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } | |
| 21 | 19 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
| 22 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → 𝑋 ∈ 𝑉 ) | |
| 23 | simprr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → 𝐸 ∈ 𝑋 ) | |
| 24 | prssi | ⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) | |
| 25 | 24 | ancoms | ⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) |
| 26 | 25 | ad2ant2lr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑐 , 𝑏 } ⊆ 𝑋 ) |
| 27 | prfi | ⊢ { 𝑐 , 𝑏 } ∈ Fin | |
| 28 | 27 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑐 , 𝑏 } ∈ Fin ) |
| 29 | acsfn | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋 ) ∧ ( { 𝑐 , 𝑏 } ⊆ 𝑋 ∧ { 𝑐 , 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) | |
| 30 | 22 23 26 28 29 | syl22anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝐸 ∈ 𝑋 ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 31 | 30 | expr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 32 | 31 | ralimdva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 34 | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) | |
| 35 | 21 33 34 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑐 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
| 36 | 20 35 | eqeltrrid | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 38 | 37 | ralimdva | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 39 | 38 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 40 | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) | |
| 41 | 19 39 40 | syl2an2r | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑋 ( { 𝑐 , 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
| 42 | 18 41 | eqeltrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |