This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction in a monoid. In this theorem, ps ( x ) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in G ). The hypothesis mndind.k tells that G is generating. (Contributed by SO, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndind.ch | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| mndind.th | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| mndind.ta | ⊢ ( 𝑥 = 0 → ( 𝜓 ↔ 𝜏 ) ) | ||
| mndind.et | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | ||
| mndind.0g | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| mndind.pg | ⊢ + = ( +g ‘ 𝑀 ) | ||
| mndind.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| mndind.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| mndind.g | ⊢ ( 𝜑 → 𝐺 ⊆ 𝐵 ) | ||
| mndind.k | ⊢ ( 𝜑 → 𝐵 = ( ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) ‘ 𝐺 ) ) | ||
| mndind.i1 | ⊢ ( 𝜑 → 𝜏 ) | ||
| mndind.i2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝜒 ) → 𝜃 ) | ||
| mndind.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | mndind | ⊢ ( 𝜑 → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndind.ch | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | mndind.th | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | mndind.ta | ⊢ ( 𝑥 = 0 → ( 𝜓 ↔ 𝜏 ) ) | |
| 4 | mndind.et | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | |
| 5 | mndind.0g | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 6 | mndind.pg | ⊢ + = ( +g ‘ 𝑀 ) | |
| 7 | mndind.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 8 | mndind.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 9 | mndind.g | ⊢ ( 𝜑 → 𝐺 ⊆ 𝐵 ) | |
| 10 | mndind.k | ⊢ ( 𝜑 → 𝐵 = ( ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) ‘ 𝐺 ) ) | |
| 11 | mndind.i1 | ⊢ ( 𝜑 → 𝜏 ) | |
| 12 | mndind.i2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝜒 ) → 𝜃 ) | |
| 13 | mndind.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 14 | 7 5 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 15 | 8 14 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 16 | 3 | sbcieg | ⊢ ( 0 ∈ 𝐵 → ( [ 0 / 𝑥 ] 𝜓 ↔ 𝜏 ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( [ 0 / 𝑥 ] 𝜓 ↔ 𝜏 ) ) |
| 18 | 11 17 | mpbird | ⊢ ( 𝜑 → [ 0 / 𝑥 ] 𝜓 ) |
| 19 | dfsbcq | ⊢ ( 𝑎 = 0 → ( [ 𝑎 / 𝑥 ] 𝜓 ↔ [ 0 / 𝑥 ] 𝜓 ) ) | |
| 20 | oveq1 | ⊢ ( 𝑎 = 0 → ( 𝑎 + 𝐴 ) = ( 0 + 𝐴 ) ) | |
| 21 | 20 | sbceq1d | ⊢ ( 𝑎 = 0 → ( [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ↔ [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ) ) |
| 22 | 19 21 | imbi12d | ⊢ ( 𝑎 = 0 → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ↔ ( [ 0 / 𝑥 ] 𝜓 → [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ) ) ) |
| 23 | 7 | submacs | ⊢ ( 𝑀 ∈ Mnd → ( SubMnd ‘ 𝑀 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 24 | 8 23 | syl | ⊢ ( 𝜑 → ( SubMnd ‘ 𝑀 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 25 | 24 | acsmred | ⊢ ( 𝜑 → ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 26 | eleq1w | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) | |
| 27 | 26 | anbi2d | ⊢ ( 𝑦 = 𝑎 → ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 28 | vex | ⊢ 𝑦 ∈ V | |
| 29 | 28 1 | sbcie | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜒 ) |
| 30 | dfsbcq | ⊢ ( 𝑦 = 𝑎 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] 𝜓 ) ) | |
| 31 | 29 30 | bitr3id | ⊢ ( 𝑦 = 𝑎 → ( 𝜒 ↔ [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 32 | oveq1 | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 + 𝑏 ) = ( 𝑎 + 𝑏 ) ) | |
| 33 | 32 | sbceq1d | ⊢ ( 𝑦 = 𝑎 → ( [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝜒 → [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ) ) |
| 35 | 27 34 | imbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) ↔ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑎 ∈ 𝐵 ) → ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ) ) ) |
| 36 | eleq1w | ⊢ ( 𝑧 = 𝑏 → ( 𝑧 ∈ 𝐺 ↔ 𝑏 ∈ 𝐺 ) ) | |
| 37 | 36 | anbi2d | ⊢ ( 𝑧 = 𝑏 → ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) ↔ ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ) ) |
| 38 | 37 | anbi1d | ⊢ ( 𝑧 = 𝑏 → ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 39 | ovex | ⊢ ( 𝑦 + 𝑧 ) ∈ V | |
| 40 | 39 2 | sbcie | ⊢ ( [ ( 𝑦 + 𝑧 ) / 𝑥 ] 𝜓 ↔ 𝜃 ) |
| 41 | oveq2 | ⊢ ( 𝑧 = 𝑏 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝑏 ) ) | |
| 42 | 41 | sbceq1d | ⊢ ( 𝑧 = 𝑏 → ( [ ( 𝑦 + 𝑧 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 43 | 40 42 | bitr3id | ⊢ ( 𝑧 = 𝑏 → ( 𝜃 ↔ [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑧 = 𝑏 → ( ( 𝜒 → 𝜃 ) ↔ ( 𝜒 → [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) ) |
| 45 | 38 44 | imbi12d | ⊢ ( 𝑧 = 𝑏 → ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) ) ) |
| 46 | 12 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐺 ) → ( 𝜒 → 𝜃 ) ) |
| 47 | 46 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐺 ) → ( 𝜒 → 𝜃 ) ) |
| 48 | 47 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → 𝜃 ) ) |
| 49 | 45 48 | chvarvv | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → [ ( 𝑦 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 50 | 35 49 | chvarvv | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) ∧ 𝑎 ∈ 𝐵 ) → ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐺 ) → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ) |
| 52 | 9 51 | ssrabdv | ⊢ ( 𝜑 → 𝐺 ⊆ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ) |
| 53 | 7 6 5 | mndrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 + 0 ) = 𝑎 ) |
| 54 | 8 53 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 + 0 ) = 𝑎 ) |
| 55 | 54 | sbceq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ↔ [ 𝑎 / 𝑥 ] 𝜓 ) ) |
| 56 | 55 | biimprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ) ) |
| 57 | 56 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ) ) |
| 58 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ∧ ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) ) → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ) | |
| 59 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑀 ∈ Mnd ) |
| 60 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 61 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑐 ∈ 𝐵 ) | |
| 62 | 7 6 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑏 + 𝑐 ) ∈ 𝐵 ) |
| 63 | 59 60 61 62 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 + 𝑐 ) ∈ 𝐵 ) |
| 64 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑏 + 𝑐 ) ) → 𝑎 = ( 𝑏 + 𝑐 ) ) | |
| 65 | 64 | sbceq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑏 + 𝑐 ) ) → ( [ 𝑎 / 𝑥 ] 𝜓 ↔ [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 ) ) |
| 66 | oveq1 | ⊢ ( 𝑎 = ( 𝑏 + 𝑐 ) → ( 𝑎 + 𝑑 ) = ( ( 𝑏 + 𝑐 ) + 𝑑 ) ) | |
| 67 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑑 ∈ 𝐵 ) | |
| 68 | 7 6 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 69 | 59 60 61 67 68 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 70 | 66 69 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑏 + 𝑐 ) ) → ( 𝑎 + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 71 | 70 | sbceq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑏 + 𝑐 ) ) → ( [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 72 | 65 71 | imbi12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑎 = ( 𝑏 + 𝑐 ) ) → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ↔ ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 73 | 63 72 | rspcdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) → ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 74 | 73 | ralrimdva | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) → ∀ 𝑏 ∈ 𝐵 ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 75 | 74 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) → ∀ 𝑏 ∈ 𝐵 ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 76 | oveq1 | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 + 𝑐 ) = ( 𝑎 + 𝑐 ) ) | |
| 77 | 76 | sbceq1d | ⊢ ( 𝑏 = 𝑎 → ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ) |
| 78 | oveq1 | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 + ( 𝑐 + 𝑑 ) ) = ( 𝑎 + ( 𝑐 + 𝑑 ) ) ) | |
| 79 | 78 | sbceq1d | ⊢ ( 𝑏 = 𝑎 → ( [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 80 | 77 79 | imbi12d | ⊢ ( 𝑏 = 𝑎 → ( ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ↔ ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 81 | 80 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ 𝐵 ( [ ( 𝑏 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑏 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 82 | 75 81 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) → ∀ 𝑎 ∈ 𝐵 ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 83 | 82 | adantrrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ∧ ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) ) → ∀ 𝑎 ∈ 𝐵 ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 84 | imim1 | ⊢ ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) → ( ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) → ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) | |
| 85 | 84 | ral2imi | ⊢ ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) → ( ∀ 𝑎 ∈ 𝐵 ( [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 86 | 58 83 85 | sylc | ⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ∧ ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) ) → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 87 | oveq2 | ⊢ ( 𝑏 = 0 → ( 𝑎 + 𝑏 ) = ( 𝑎 + 0 ) ) | |
| 88 | 87 | sbceq1d | ⊢ ( 𝑏 = 0 → ( [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ) ) |
| 89 | 88 | imbi2d | ⊢ ( 𝑏 = 0 → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ) ) ) |
| 90 | 89 | ralbidv | ⊢ ( 𝑏 = 0 → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 0 ) / 𝑥 ] 𝜓 ) ) ) |
| 91 | oveq2 | ⊢ ( 𝑏 = 𝑐 → ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝑐 ) ) | |
| 92 | 91 | sbceq1d | ⊢ ( 𝑏 = 𝑐 → ( [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ) |
| 93 | 92 | imbi2d | ⊢ ( 𝑏 = 𝑐 → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ) ) |
| 94 | 93 | ralbidv | ⊢ ( 𝑏 = 𝑐 → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑐 ) / 𝑥 ] 𝜓 ) ) ) |
| 95 | oveq2 | ⊢ ( 𝑏 = 𝑑 → ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝑑 ) ) | |
| 96 | 95 | sbceq1d | ⊢ ( 𝑏 = 𝑑 → ( [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) |
| 97 | 96 | imbi2d | ⊢ ( 𝑏 = 𝑑 → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) |
| 98 | 97 | ralbidv | ⊢ ( 𝑏 = 𝑑 → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑑 ) / 𝑥 ] 𝜓 ) ) ) |
| 99 | oveq2 | ⊢ ( 𝑏 = ( 𝑐 + 𝑑 ) → ( 𝑎 + 𝑏 ) = ( 𝑎 + ( 𝑐 + 𝑑 ) ) ) | |
| 100 | 99 | sbceq1d | ⊢ ( 𝑏 = ( 𝑐 + 𝑑 ) → ( [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) |
| 101 | 100 | imbi2d | ⊢ ( 𝑏 = ( 𝑐 + 𝑑 ) → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 102 | 101 | ralbidv | ⊢ ( 𝑏 = ( 𝑐 + 𝑑 ) → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + ( 𝑐 + 𝑑 ) ) / 𝑥 ] 𝜓 ) ) ) |
| 103 | 7 6 5 8 57 86 90 94 98 102 | issubmd | ⊢ ( 𝜑 → { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ∈ ( SubMnd ‘ 𝑀 ) ) |
| 104 | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) | |
| 105 | 104 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝑀 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝐺 ⊆ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ∧ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ∈ ( SubMnd ‘ 𝑀 ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) ‘ 𝐺 ) ⊆ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ) |
| 106 | 25 52 103 105 | syl3anc | ⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) ‘ 𝐺 ) ⊆ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ) |
| 107 | 10 106 | eqsstrd | ⊢ ( 𝜑 → 𝐵 ⊆ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ) |
| 108 | 107 13 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ) |
| 109 | oveq2 | ⊢ ( 𝑏 = 𝐴 → ( 𝑎 + 𝑏 ) = ( 𝑎 + 𝐴 ) ) | |
| 110 | 109 | sbceq1d | ⊢ ( 𝑏 = 𝐴 → ( [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ↔ [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) |
| 111 | 110 | imbi2d | ⊢ ( 𝑏 = 𝐴 → ( ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) ) |
| 112 | 111 | ralbidv | ⊢ ( 𝑏 = 𝐴 → ( ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) ↔ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) ) |
| 113 | 112 | elrab | ⊢ ( 𝐴 ∈ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) ) |
| 114 | 113 | simprbi | ⊢ ( 𝐴 ∈ { 𝑏 ∈ 𝐵 ∣ ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝑏 ) / 𝑥 ] 𝜓 ) } → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) |
| 115 | 108 114 | syl | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] 𝜓 → [ ( 𝑎 + 𝐴 ) / 𝑥 ] 𝜓 ) ) |
| 116 | 22 115 15 | rspcdva | ⊢ ( 𝜑 → ( [ 0 / 𝑥 ] 𝜓 → [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ) ) |
| 117 | 18 116 | mpd | ⊢ ( 𝜑 → [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ) |
| 118 | 7 6 5 | mndlid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 119 | 8 13 118 | syl2anc | ⊢ ( 𝜑 → ( 0 + 𝐴 ) = 𝐴 ) |
| 120 | 119 | sbceq1d | ⊢ ( 𝜑 → ( [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| 121 | 4 | sbcieg | ⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜂 ) ) |
| 122 | 13 121 | syl | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜂 ) ) |
| 123 | 120 122 | bitrd | ⊢ ( 𝜑 → ( [ ( 0 + 𝐴 ) / 𝑥 ] 𝜓 ↔ 𝜂 ) ) |
| 124 | 117 123 | mpbid | ⊢ ( 𝜑 → 𝜂 ) |