This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climexp.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climexp.2 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climexp.3 | ⊢ Ⅎ 𝑘 𝐻 | ||
| climexp.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climexp.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climexp.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) | ||
| climexp.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climexp.8 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| climexp.9 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) | ||
| climexp.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) | ||
| Assertion | climexp | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climexp.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climexp.2 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climexp.3 | ⊢ Ⅎ 𝑘 𝐻 | |
| 4 | climexp.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 5 | climexp.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 6 | climexp.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) | |
| 7 | climexp.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 8 | climexp.8 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 9 | climexp.9 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) | |
| 10 | climexp.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) | |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | expcn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 13 | 8 12 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | 11 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 15 | 13 14 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 16 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 18 | 4 5 15 6 7 17 | climcncf | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 ) ) |
| 19 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) | |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) | |
| 21 | 20 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑥 ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 22 | 17 8 | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 23 | 19 21 17 22 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ 𝐴 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 24 | 18 23 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( 𝐴 ↑ 𝑁 ) ) |
| 25 | cnex | ⊢ ℂ ∈ V | |
| 26 | 25 | mptex | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ V |
| 27 | 4 | fvexi | ⊢ 𝑍 ∈ V |
| 28 | fex | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) | |
| 29 | 6 27 28 | sylancl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 30 | coexg | ⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ V ∧ 𝐹 ∈ V ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ V ) | |
| 31 | 26 29 30 | sylancr | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ V ) |
| 32 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) | |
| 33 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑗 ) ) → 𝑥 = ( 𝐹 ‘ 𝑗 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑗 ) ) → ( 𝑥 ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
| 35 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 36 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑁 ∈ ℕ0 ) |
| 37 | 35 36 | expcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ∈ ℂ ) |
| 38 | 32 34 35 37 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
| 39 | fvco3 | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℂ ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 40 | 6 39 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 41 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 | |
| 42 | 1 41 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 43 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 44 | 3 43 | nffv | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
| 45 | 2 43 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 46 | nfcv | ⊢ Ⅎ 𝑘 ↑ | |
| 47 | nfcv | ⊢ Ⅎ 𝑘 𝑁 | |
| 48 | 45 46 47 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) |
| 49 | 44 48 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) |
| 50 | 42 49 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
| 51 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) | |
| 52 | 51 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 53 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) | |
| 54 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 55 | 54 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
| 56 | 53 55 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ↔ ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) |
| 57 | 52 56 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ↑ 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) ) ) |
| 58 | 50 57 10 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ↑ 𝑁 ) ) |
| 59 | 38 40 58 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 60 | 4 9 31 5 59 | climeq | ⊢ ( 𝜑 → ( 𝐻 ⇝ ( 𝐴 ↑ 𝑁 ) ↔ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ⇝ ( 𝐴 ↑ 𝑁 ) ) ) |
| 61 | 24 60 | mpbird | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 ↑ 𝑁 ) ) |