This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climdivf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climdivf.2 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climdivf.3 | ⊢ Ⅎ 𝑘 𝐺 | ||
| climdivf.4 | ⊢ Ⅎ 𝑘 𝐻 | ||
| climdivf.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climdivf.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climdivf.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climdivf.8 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| climdivf.9 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | ||
| climdivf.10 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| climdivf.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climdivf.12 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) | ||
| climdivf.13 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | climdivf | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climdivf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climdivf.2 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climdivf.3 | ⊢ Ⅎ 𝑘 𝐺 | |
| 4 | climdivf.4 | ⊢ Ⅎ 𝑘 𝐻 | |
| 5 | climdivf.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | climdivf.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 7 | climdivf.7 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 8 | climdivf.8 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 9 | climdivf.9 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | |
| 10 | climdivf.10 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 11 | climdivf.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 12 | climdivf.12 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) | |
| 13 | climdivf.13 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) ) | |
| 14 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) | |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 16 | 12 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 17 | eldifsni | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) | |
| 18 | 12 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) |
| 19 | 16 18 | reccld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 / ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 20 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) | |
| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 22 | 15 19 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 23 | 5 | fvexi | ⊢ 𝑍 ∈ V |
| 24 | 23 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ∈ V |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ∈ V ) |
| 26 | 1 3 14 5 6 9 10 12 22 25 | climrecf | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ⇝ ( 1 / 𝐵 ) ) |
| 27 | 22 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 28 | 11 16 18 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 29 | 22 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 / ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ) ) |
| 31 | 13 28 30 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ) ) |
| 32 | 1 2 14 4 5 6 7 8 26 11 27 31 | climmulf | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 33 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 34 | 7 33 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 35 | climcl | ⊢ ( 𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ ) | |
| 36 | 9 35 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 37 | 34 36 10 | divrecd | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 38 | 32 37 | breqtrrd | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 / 𝐵 ) ) |