This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a subset of X and filters extend to ultrafilters in X , then they still do in Y . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssufl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ UFL ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑋 ∈ UFL ) | |
| 2 | filfbas | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑓 ∈ ( fBas ‘ 𝑌 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑓 ∈ ( fBas ‘ 𝑌 ) ) |
| 4 | filsspw | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑓 ⊆ 𝒫 𝑌 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑓 ⊆ 𝒫 𝑌 ) |
| 6 | simplr | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) | |
| 7 | 6 | sspwd | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
| 8 | 5 7 | sstrd | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑓 ⊆ 𝒫 𝑋 ) |
| 9 | fbasweak | ⊢ ( ( 𝑓 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ UFL ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) | |
| 10 | 3 8 1 9 | syl3anc | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 11 | fgcl | ⊢ ( 𝑓 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 13 | ufli | ⊢ ( ( 𝑋 ∈ UFL ∧ ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑢 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) | |
| 14 | 1 12 13 | syl2anc | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → ∃ 𝑢 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) |
| 15 | ssfg | ⊢ ( 𝑓 ∈ ( fBas ‘ 𝑋 ) → 𝑓 ⊆ ( 𝑋 filGen 𝑓 ) ) | |
| 16 | 10 15 | syl | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → 𝑓 ⊆ ( 𝑋 filGen 𝑓 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑓 ⊆ ( 𝑋 filGen 𝑓 ) ) |
| 18 | simprr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) | |
| 19 | 17 18 | sstrd | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑓 ⊆ 𝑢 ) |
| 20 | filtop | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝑓 ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑌 ∈ 𝑓 ) |
| 22 | 19 21 | sseldd | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑌 ∈ 𝑢 ) |
| 23 | simprl | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑢 ∈ ( UFil ‘ 𝑋 ) ) | |
| 24 | 6 | adantr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑌 ⊆ 𝑋 ) |
| 25 | trufil | ⊢ ( ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑢 ↾t 𝑌 ) ∈ ( UFil ‘ 𝑌 ) ↔ 𝑌 ∈ 𝑢 ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ( ( 𝑢 ↾t 𝑌 ) ∈ ( UFil ‘ 𝑌 ) ↔ 𝑌 ∈ 𝑢 ) ) |
| 27 | 22 26 | mpbird | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ( 𝑢 ↾t 𝑌 ) ∈ ( UFil ‘ 𝑌 ) ) |
| 28 | 5 | adantr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑓 ⊆ 𝒫 𝑌 ) |
| 29 | restid2 | ⊢ ( ( 𝑌 ∈ 𝑓 ∧ 𝑓 ⊆ 𝒫 𝑌 ) → ( 𝑓 ↾t 𝑌 ) = 𝑓 ) | |
| 30 | 21 28 29 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ( 𝑓 ↾t 𝑌 ) = 𝑓 ) |
| 31 | ssrest | ⊢ ( ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ⊆ 𝑢 ) → ( 𝑓 ↾t 𝑌 ) ⊆ ( 𝑢 ↾t 𝑌 ) ) | |
| 32 | 23 19 31 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ( 𝑓 ↾t 𝑌 ) ⊆ ( 𝑢 ↾t 𝑌 ) ) |
| 33 | 30 32 | eqsstrrd | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → 𝑓 ⊆ ( 𝑢 ↾t 𝑌 ) ) |
| 34 | sseq2 | ⊢ ( 𝑔 = ( 𝑢 ↾t 𝑌 ) → ( 𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ ( 𝑢 ↾t 𝑌 ) ) ) | |
| 35 | 34 | rspcev | ⊢ ( ( ( 𝑢 ↾t 𝑌 ) ∈ ( UFil ‘ 𝑌 ) ∧ 𝑓 ⊆ ( 𝑢 ↾t 𝑌 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) |
| 36 | 27 33 35 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑢 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ⊆ 𝑢 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) |
| 37 | 14 36 | rexlimddv | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑌 ) ) → ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) |
| 38 | 37 | ralrimiva | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) → ∀ 𝑓 ∈ ( Fil ‘ 𝑌 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) |
| 39 | ssexg | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ UFL ) → 𝑌 ∈ V ) | |
| 40 | 39 | ancoms | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 41 | isufl | ⊢ ( 𝑌 ∈ V → ( 𝑌 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑌 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 ∈ UFL ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑌 ) ∃ 𝑔 ∈ ( UFil ‘ 𝑌 ) 𝑓 ⊆ 𝑔 ) ) |
| 43 | 38 42 | mpbird | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ UFL ) |