This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is a finer topology than J , then the subspace topologies induced by A maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrest | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐽 ↾t 𝐴 ) ⊆ ( 𝐾 ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 2 | ssrexv | ⊢ ( 𝐽 ⊆ 𝐾 → ( ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) → ∃ 𝑦 ∈ 𝐾 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) → ∃ 𝑦 ∈ 𝐾 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 4 | n0i | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) = ∅ ) | |
| 5 | restfn | ⊢ ↾t Fn ( V × V ) | |
| 6 | 5 | fndmi | ⊢ dom ↾t = ( V × V ) |
| 7 | 6 | ndmov | ⊢ ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 8 | 4 7 | nsyl2 | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) |
| 10 | elrest | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 12 | simpll | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → 𝐾 ∈ 𝑉 ) | |
| 13 | 9 | simprd | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → 𝐴 ∈ V ) |
| 14 | elrest | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐾 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐾 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → ( 𝑥 ∈ ( 𝐾 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐾 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 16 | 3 11 15 | 3imtr4d | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ ( 𝐾 ↾t 𝐴 ) ) ) |
| 17 | 1 16 | mpd | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ) → 𝑥 ∈ ( 𝐾 ↾t 𝐴 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ ( 𝐾 ↾t 𝐴 ) ) ) |
| 19 | 18 | ssrdv | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐽 ↾t 𝐴 ) ⊆ ( 𝐾 ↾t 𝐴 ) ) |