This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽 ↾t 𝐴 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 ) | |
| 4 | 2 3 | ssexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐽 ∈ V ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → 𝐴 ∈ 𝑉 ) | |
| 6 | restval | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 8 | 3 | sselda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 9 | 8 | elpwid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝐴 ) |
| 10 | dfss2 | ⊢ ( 𝑥 ⊆ 𝐴 ↔ ( 𝑥 ∩ 𝐴 ) = 𝑥 ) | |
| 11 | 9 10 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) = 𝑥 ) |
| 12 | 11 | mpteq2dva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑥 ∈ 𝐽 ↦ 𝑥 ) ) |
| 13 | mptresid | ⊢ ( I ↾ 𝐽 ) = ( 𝑥 ∈ 𝐽 ↦ 𝑥 ) | |
| 14 | 12 13 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( I ↾ 𝐽 ) ) |
| 15 | 14 | rneqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = ran ( I ↾ 𝐽 ) ) |
| 16 | rnresi | ⊢ ran ( I ↾ 𝐽 ) = 𝐽 | |
| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) = 𝐽 ) |
| 18 | 7 17 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴 ) → ( 𝐽 ↾t 𝐴 ) = 𝐽 ) |