This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sstotbnd.2 | ⊢ 𝑁 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) | |
| Assertion | sstotbnd | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstotbnd.2 | ⊢ 𝑁 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) | |
| 2 | 1 | sstotbnd2 | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 3 | elfpw | ⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑢 ⊆ 𝑋 ∧ 𝑢 ∈ Fin ) ) | |
| 4 | 3 | simprbi | ⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑢 ∈ Fin ) |
| 5 | mptfi | ⊢ ( 𝑢 ∈ Fin → ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) | |
| 6 | rnfi | ⊢ ( ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
| 9 | simprr | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 11 | 10 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = { 𝑏 ∣ ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } |
| 12 | 3 | simplbi | ⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑢 ⊆ 𝑋 ) |
| 13 | ssrexv | ⊢ ( 𝑢 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 16 | 15 | ss2abdv | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → { 𝑏 ∣ ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
| 17 | 11 16 | eqsstrid | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
| 18 | unieq | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑣 = ∪ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) | |
| 19 | ovex | ⊢ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∈ V | |
| 20 | 19 | dfiun3 | ⊢ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 21 | 18 20 | eqtr4di | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑣 = ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 22 | 21 | sseq2d | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑌 ⊆ ∪ 𝑣 ↔ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 23 | ssabral | ⊢ ( 𝑣 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 24 | sseq1 | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑣 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) | |
| 25 | 23 24 | bitr3id | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
| 26 | 22 25 | anbi12d | ⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) ) |
| 27 | 26 | rspcev | ⊢ ( ( ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 28 | 8 9 17 27 | syl12anc | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 29 | 28 | rexlimdvaa | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 30 | oveq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 31 | 30 | eqeq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 32 | 31 | ac6sfi | ⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 33 | 32 | adantrl | ⊢ ( ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 35 | frn | ⊢ ( 𝑓 : 𝑣 ⟶ 𝑋 → ran 𝑓 ⊆ 𝑋 ) | |
| 36 | 35 | ad2antrl | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ⊆ 𝑋 ) |
| 37 | simplrl | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑣 ∈ Fin ) | |
| 38 | ffn | ⊢ ( 𝑓 : 𝑣 ⟶ 𝑋 → 𝑓 Fn 𝑣 ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑓 Fn 𝑣 ) |
| 40 | dffn4 | ⊢ ( 𝑓 Fn 𝑣 ↔ 𝑓 : 𝑣 –onto→ ran 𝑓 ) | |
| 41 | 39 40 | sylib | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑓 : 𝑣 –onto→ ran 𝑓 ) |
| 42 | fofi | ⊢ ( ( 𝑣 ∈ Fin ∧ 𝑓 : 𝑣 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 43 | 37 41 42 | syl2anc | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ∈ Fin ) |
| 44 | elfpw | ⊢ ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin ) ) | |
| 45 | 36 43 44 | sylanbrc | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 46 | simprrl | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑌 ⊆ ∪ 𝑣 ) | |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑣 ) |
| 48 | uniiun | ⊢ ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 𝑏 | |
| 49 | iuneq2 | ⊢ ( ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑏 ∈ 𝑣 𝑏 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 50 | 48 49 | eqtrid | ⊢ ( ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 51 | 50 | ad2antll | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 52 | 47 51 | sseqtrd | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 53 | 30 | eleq2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 54 | 53 | rexrn | ⊢ ( 𝑓 Fn 𝑣 → ( ∃ 𝑥 ∈ ran 𝑓 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑣 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 55 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ ran 𝑓 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 56 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑣 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 57 | 54 55 56 | 3bitr4g | ⊢ ( 𝑓 Fn 𝑣 → ( 𝑦 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑦 ∈ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 58 | 57 | eqrdv | ⊢ ( 𝑓 Fn 𝑣 → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 59 | 39 58 | syl | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 60 | 52 59 | sseqtrrd | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 61 | iuneq1 | ⊢ ( 𝑢 = ran 𝑓 → ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 62 | 61 | sseq2d | ⊢ ( 𝑢 = ran 𝑓 → ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 63 | 62 | rspcev | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 64 | 45 60 63 | syl2anc | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 65 | 34 64 | exlimddv | ⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 66 | 65 | rexlimdvaa | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 67 | 29 66 | impbid | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 68 | 67 | ralbidv | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 69 | 2 68 | bitrd | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |