This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sstotbnd.2 | ⊢ 𝑁 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) | |
| Assertion | sstotbnd3 | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstotbnd.2 | ⊢ 𝑁 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) | |
| 2 | 1 | sstotbnd2 | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 3 | elin | ⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin ) ) | |
| 4 | rabfi | ⊢ ( 𝑣 ∈ Fin → { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) | |
| 5 | 4 | anim2i | ⊢ ( ( 𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin ) → ( 𝑣 ∈ 𝒫 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) |
| 6 | 3 5 | sylbi | ⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑣 ∈ 𝒫 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) |
| 7 | 6 | anim2i | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ( 𝑣 ∈ 𝒫 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ( 𝑣 ∈ 𝒫 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |
| 9 | an12 | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ( 𝑣 ∈ 𝒫 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑣 ∈ 𝒫 𝑋 ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑣 ∈ 𝒫 𝑋 ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |
| 11 | 10 | reximi2 | ⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) |
| 12 | 11 | ralimi | ⊢ ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) |
| 13 | 2 12 | biimtrdi | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |
| 14 | ssrab2 | ⊢ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ⊆ 𝑣 | |
| 15 | elpwi | ⊢ ( 𝑣 ∈ 𝒫 𝑋 → 𝑣 ⊆ 𝑋 ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → 𝑣 ⊆ 𝑋 ) |
| 17 | 14 16 | sstrid | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ⊆ 𝑋 ) |
| 18 | simprr | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) | |
| 19 | elfpw | ⊢ ( { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ⊆ 𝑋 ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) | |
| 20 | 17 18 19 | sylanbrc | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 21 | ssel2 | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 22 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑣 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 23 | 21 22 | sylib | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → ∃ 𝑥 ∈ 𝑣 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 24 | inelcm | ⊢ ( ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ) | |
| 25 | 24 | expcom | ⊢ ( 𝑧 ∈ 𝑌 → ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ) ) |
| 26 | 25 | ancrd | ⊢ ( 𝑧 ∈ 𝑌 → ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 27 | 26 | reximdv | ⊢ ( 𝑧 ∈ 𝑌 → ( ∃ 𝑥 ∈ 𝑣 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑣 ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 28 | 27 | impcom | ⊢ ( ( ∃ 𝑥 ∈ 𝑣 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → ∃ 𝑥 ∈ 𝑣 ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 29 | 23 28 | sylancom | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → ∃ 𝑥 ∈ 𝑣 ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 30 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 31 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 32 | 31 | eleq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 33 | 32 | rexrab2 | ⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑣 ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 34 | 30 33 | bitri | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑣 ( ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 35 | 29 34 | sylibr | ⊢ ( ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 36 | 35 | ex | ⊢ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ( 𝑧 ∈ 𝑌 → 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 37 | 36 | ssrdv | ⊢ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → 𝑌 ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 38 | 37 | ad2antrl | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → 𝑌 ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 39 | iuneq1 | ⊢ ( 𝑤 = { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } → ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) | |
| 40 | 39 | sseq2d | ⊢ ( 𝑤 = { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } → ( 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑌 ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 41 | 40 | rspcev | ⊢ ( ( { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑤 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 42 | 20 38 41 | syl2anc | ⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝒫 𝑋 ) ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) → ∃ 𝑤 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 43 | 42 | rexlimdva2 | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑤 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 44 | 43 | ralimdv | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 45 | 1 | sstotbnd2 | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑤 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 46 | 44 45 | sylibrd | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) → 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ) ) |
| 47 | 13 46 | impbid | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ 𝒫 𝑋 ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ { 𝑥 ∈ 𝑣 ∣ ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∩ 𝑌 ) ≠ ∅ } ∈ Fin ) ) ) |