This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 6-May-2015) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfin4 | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinIV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐴 ∈ FinIV ) | |
| 2 | pssss | ⊢ ( 𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵 ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 4 | 2 3 | sylan9ssr | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → 𝑥 ⊆ 𝐴 ) |
| 5 | difssd | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) | |
| 6 | 4 5 | unssd | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ 𝐴 ) |
| 7 | pssnel | ⊢ ( 𝑥 ⊊ 𝐵 → ∃ 𝑐 ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑐 ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) |
| 9 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 10 | simprl | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝑐 ∈ 𝐵 ) | |
| 11 | 9 10 | sseldd | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → 𝑐 ∈ 𝐴 ) |
| 12 | simprr | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ 𝑥 ) | |
| 13 | elndif | ⊢ ( 𝑐 ∈ 𝐵 → ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 14 | 13 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 15 | ioran | ⊢ ( ¬ ( 𝑐 ∈ 𝑥 ∨ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ¬ 𝑐 ∈ 𝑥 ∧ ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 16 | elun | ⊢ ( 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑐 ∈ 𝑥 ∨ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 17 | 15 16 | xchnxbir | ⊢ ( ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ¬ 𝑐 ∈ 𝑥 ∧ ¬ 𝑐 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 18 | 12 14 17 | sylanbrc | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 19 | nelneq2 | ⊢ ( ( 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 21 | eqcom | ⊢ ( 𝐴 = ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) | |
| 22 | 20 21 | sylnib | ⊢ ( ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ ( 𝑐 ∈ 𝐵 ∧ ¬ 𝑐 ∈ 𝑥 ) ) → ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 23 | 8 22 | exlimddv | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 24 | dfpss2 | ⊢ ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ↔ ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ 𝐴 ∧ ¬ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) ) | |
| 25 | 6 23 24 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ) |
| 26 | 25 | adantrr | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ) |
| 27 | simprr | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ≈ 𝐵 ) | |
| 28 | difexg | ⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∖ 𝐵 ) ∈ V ) | |
| 29 | enrefg | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) | |
| 30 | 1 28 29 | 3syl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 31 | 2 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ⊆ 𝐵 ) |
| 32 | ssinss1 | ⊢ ( 𝑥 ⊆ 𝐵 → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ) |
| 34 | inssdif0 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) | |
| 35 | 33 34 | sylib | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
| 36 | disjdif | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ | |
| 37 | 35 36 | jctir | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ) |
| 38 | unen | ⊢ ( ( ( 𝑥 ≈ 𝐵 ∧ ( 𝐴 ∖ 𝐵 ) ≈ ( 𝐴 ∖ 𝐵 ) ) ∧ ( ( 𝑥 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 39 | 27 30 37 38 | syl21anc | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
| 40 | simplr | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 41 | undif | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) | |
| 42 | 40 41 | sylib | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
| 43 | 39 42 | breqtrd | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ 𝐴 ) |
| 44 | fin4i | ⊢ ( ( ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ⊊ 𝐴 ∧ ( 𝑥 ∪ ( 𝐴 ∖ 𝐵 ) ) ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) | |
| 45 | 26 43 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ¬ 𝐴 ∈ FinIV ) |
| 46 | 1 45 | pm2.65da | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ¬ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) |
| 47 | 46 | nexdv | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) |
| 48 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ FinIV ) → 𝐵 ∈ V ) | |
| 49 | 48 | ancoms | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 50 | isfin4 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
| 52 | 47 51 | mpbird | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ FinIV ) |