This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by a Dedekind finite set is Dedekind finite. (Contributed by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domfin4 | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ FinIV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng | ⊢ ( 𝐴 ∈ FinIV → ( 𝐵 ≼ 𝐴 ↔ ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 3 | ensym | ⊢ ( 𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵 ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ≈ 𝐵 ) |
| 5 | ssfin4 | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ FinIV ) | |
| 6 | 5 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ∈ FinIV ) |
| 7 | fin4en1 | ⊢ ( 𝑥 ≈ 𝐵 → ( 𝑥 ∈ FinIV → 𝐵 ∈ FinIV ) ) | |
| 8 | 4 6 7 | sylc | ⊢ ( ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝐵 ∈ FinIV ) |
| 9 | 2 8 | exlimddv | ⊢ ( ( 𝐴 ∈ FinIV ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ FinIV ) |