This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 6-May-2015) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfin4 | |- ( ( A e. Fin4 /\ B C_ A ) -> B e. Fin4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> A e. Fin4 ) |
|
| 2 | pssss | |- ( x C. B -> x C_ B ) |
|
| 3 | simpr | |- ( ( A e. Fin4 /\ B C_ A ) -> B C_ A ) |
|
| 4 | 2 3 | sylan9ssr | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> x C_ A ) |
| 5 | difssd | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> ( A \ B ) C_ A ) |
|
| 6 | 4 5 | unssd | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> ( x u. ( A \ B ) ) C_ A ) |
| 7 | pssnel | |- ( x C. B -> E. c ( c e. B /\ -. c e. x ) ) |
|
| 8 | 7 | adantl | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> E. c ( c e. B /\ -. c e. x ) ) |
| 9 | simpllr | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> B C_ A ) |
|
| 10 | simprl | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> c e. B ) |
|
| 11 | 9 10 | sseldd | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> c e. A ) |
| 12 | simprr | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> -. c e. x ) |
|
| 13 | elndif | |- ( c e. B -> -. c e. ( A \ B ) ) |
|
| 14 | 13 | ad2antrl | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> -. c e. ( A \ B ) ) |
| 15 | ioran | |- ( -. ( c e. x \/ c e. ( A \ B ) ) <-> ( -. c e. x /\ -. c e. ( A \ B ) ) ) |
|
| 16 | elun | |- ( c e. ( x u. ( A \ B ) ) <-> ( c e. x \/ c e. ( A \ B ) ) ) |
|
| 17 | 15 16 | xchnxbir | |- ( -. c e. ( x u. ( A \ B ) ) <-> ( -. c e. x /\ -. c e. ( A \ B ) ) ) |
| 18 | 12 14 17 | sylanbrc | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> -. c e. ( x u. ( A \ B ) ) ) |
| 19 | nelneq2 | |- ( ( c e. A /\ -. c e. ( x u. ( A \ B ) ) ) -> -. A = ( x u. ( A \ B ) ) ) |
|
| 20 | 11 18 19 | syl2anc | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> -. A = ( x u. ( A \ B ) ) ) |
| 21 | eqcom | |- ( A = ( x u. ( A \ B ) ) <-> ( x u. ( A \ B ) ) = A ) |
|
| 22 | 20 21 | sylnib | |- ( ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) /\ ( c e. B /\ -. c e. x ) ) -> -. ( x u. ( A \ B ) ) = A ) |
| 23 | 8 22 | exlimddv | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> -. ( x u. ( A \ B ) ) = A ) |
| 24 | dfpss2 | |- ( ( x u. ( A \ B ) ) C. A <-> ( ( x u. ( A \ B ) ) C_ A /\ -. ( x u. ( A \ B ) ) = A ) ) |
|
| 25 | 6 23 24 | sylanbrc | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ x C. B ) -> ( x u. ( A \ B ) ) C. A ) |
| 26 | 25 | adantrr | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( x u. ( A \ B ) ) C. A ) |
| 27 | simprr | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> x ~~ B ) |
|
| 28 | difexg | |- ( A e. Fin4 -> ( A \ B ) e. _V ) |
|
| 29 | enrefg | |- ( ( A \ B ) e. _V -> ( A \ B ) ~~ ( A \ B ) ) |
|
| 30 | 1 28 29 | 3syl | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( A \ B ) ~~ ( A \ B ) ) |
| 31 | 2 | ad2antrl | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> x C_ B ) |
| 32 | ssinss1 | |- ( x C_ B -> ( x i^i A ) C_ B ) |
|
| 33 | 31 32 | syl | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( x i^i A ) C_ B ) |
| 34 | inssdif0 | |- ( ( x i^i A ) C_ B <-> ( x i^i ( A \ B ) ) = (/) ) |
|
| 35 | 33 34 | sylib | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( x i^i ( A \ B ) ) = (/) ) |
| 36 | disjdif | |- ( B i^i ( A \ B ) ) = (/) |
|
| 37 | 35 36 | jctir | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( ( x i^i ( A \ B ) ) = (/) /\ ( B i^i ( A \ B ) ) = (/) ) ) |
| 38 | unen | |- ( ( ( x ~~ B /\ ( A \ B ) ~~ ( A \ B ) ) /\ ( ( x i^i ( A \ B ) ) = (/) /\ ( B i^i ( A \ B ) ) = (/) ) ) -> ( x u. ( A \ B ) ) ~~ ( B u. ( A \ B ) ) ) |
|
| 39 | 27 30 37 38 | syl21anc | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( x u. ( A \ B ) ) ~~ ( B u. ( A \ B ) ) ) |
| 40 | simplr | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> B C_ A ) |
|
| 41 | undif | |- ( B C_ A <-> ( B u. ( A \ B ) ) = A ) |
|
| 42 | 40 41 | sylib | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( B u. ( A \ B ) ) = A ) |
| 43 | 39 42 | breqtrd | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> ( x u. ( A \ B ) ) ~~ A ) |
| 44 | fin4i | |- ( ( ( x u. ( A \ B ) ) C. A /\ ( x u. ( A \ B ) ) ~~ A ) -> -. A e. Fin4 ) |
|
| 45 | 26 43 44 | syl2anc | |- ( ( ( A e. Fin4 /\ B C_ A ) /\ ( x C. B /\ x ~~ B ) ) -> -. A e. Fin4 ) |
| 46 | 1 45 | pm2.65da | |- ( ( A e. Fin4 /\ B C_ A ) -> -. ( x C. B /\ x ~~ B ) ) |
| 47 | 46 | nexdv | |- ( ( A e. Fin4 /\ B C_ A ) -> -. E. x ( x C. B /\ x ~~ B ) ) |
| 48 | ssexg | |- ( ( B C_ A /\ A e. Fin4 ) -> B e. _V ) |
|
| 49 | 48 | ancoms | |- ( ( A e. Fin4 /\ B C_ A ) -> B e. _V ) |
| 50 | isfin4 | |- ( B e. _V -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
|
| 51 | 49 50 | syl | |- ( ( A e. Fin4 /\ B C_ A ) -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
| 52 | 47 51 | mpbird | |- ( ( A e. Fin4 /\ B C_ A ) -> B e. Fin4 ) |