This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | ||
| srhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | srhmsubc | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 2 | srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | |
| 3 | srhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 4 | eleq1w | ⊢ ( 𝑟 = 𝑥 → ( 𝑟 ∈ Ring ↔ 𝑥 ∈ Ring ) ) | |
| 5 | 4 1 | vtoclri | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ Ring ) |
| 6 | 5 | ssriv | ⊢ 𝑆 ⊆ Ring |
| 7 | sslin | ⊢ ( 𝑆 ⊆ Ring → ( 𝑈 ∩ 𝑆 ) ⊆ ( 𝑈 ∩ Ring ) ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ 𝑆 ) ⊆ ( 𝑈 ∩ Ring ) ) |
| 9 | 2 8 | eqsstrid | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ⊆ ( 𝑈 ∩ Ring ) ) |
| 10 | ssid | ⊢ ( 𝑥 RingHom 𝑦 ) ⊆ ( 𝑥 RingHom 𝑦 ) | |
| 11 | eqid | ⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) | |
| 13 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) | |
| 14 | eqid | ⊢ ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) | |
| 15 | 1 2 | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 16 | 15 | adantrr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 17 | 1 2 | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 18 | 17 | adantrl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 19 | 11 12 13 14 16 18 | ringchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 20 | 10 19 | sseqtrrid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 RingHom 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 21 | 3 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 22 | oveq12 | ⊢ ( ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑦 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 24 | simprl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) | |
| 25 | simprr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 26 | ovexd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 RingHom 𝑦 ) ∈ V ) | |
| 27 | 21 23 24 25 26 | ovmpod | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 28 | eqid | ⊢ ( Homf ‘ ( RingCat ‘ 𝑈 ) ) = ( Homf ‘ ( RingCat ‘ 𝑈 ) ) | |
| 29 | 28 12 14 16 18 | homfval | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( Homf ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 30 | 20 27 29 | 3sstr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 31 | 30 | ralrimivva | ⊢ ( 𝑈 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 32 | ovex | ⊢ ( 𝑟 RingHom 𝑠 ) ∈ V | |
| 33 | 3 32 | fnmpoi | ⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
| 34 | 33 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
| 35 | 28 12 | homffn | ⊢ ( Homf ‘ ( RingCat ‘ 𝑈 ) ) Fn ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 36 | id | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) | |
| 37 | 11 12 36 | ringcbas | ⊢ ( 𝑈 ∈ 𝑉 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
| 38 | 37 | eqcomd | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 39 | 38 | sqxpeqd | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) = ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) |
| 40 | 39 | fneq2d | ⊢ ( 𝑈 ∈ 𝑉 → ( ( Homf ‘ ( RingCat ‘ 𝑈 ) ) Fn ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ↔ ( Homf ‘ ( RingCat ‘ 𝑈 ) ) Fn ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) ) |
| 41 | 35 40 | mpbiri | ⊢ ( 𝑈 ∈ 𝑉 → ( Homf ‘ ( RingCat ‘ 𝑈 ) ) Fn ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) |
| 42 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) ∈ V ) | |
| 43 | 34 41 42 | isssc | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐽 ⊆cat ( Homf ‘ ( RingCat ‘ 𝑈 ) ) ↔ ( 𝐶 ⊆ ( 𝑈 ∩ Ring ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) ) ) |
| 44 | 9 31 43 | mpbir2and | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ⊆cat ( Homf ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 45 | 2 | elin2 | ⊢ ( 𝑥 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑆 ) ) |
| 46 | 5 | adantl | ⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ Ring ) |
| 47 | 45 46 | sylbi | ⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ Ring ) |
| 48 | 47 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ Ring ) |
| 49 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 50 | 49 | idrhm | ⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 51 | 48 50 | syl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 52 | eqid | ⊢ ( Id ‘ ( RingCat ‘ 𝑈 ) ) = ( Id ‘ ( RingCat ‘ 𝑈 ) ) | |
| 53 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → 𝑈 ∈ 𝑉 ) | |
| 54 | 11 12 52 53 15 49 | ringcid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( ( Id ‘ ( RingCat ‘ 𝑈 ) ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 55 | 3 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 56 | oveq12 | ⊢ ( ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑥 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑥 ) ) | |
| 57 | 56 | adantl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑥 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 58 | simpr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 59 | ovexd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 RingHom 𝑥 ) ∈ V ) | |
| 60 | 55 57 58 58 59 | ovmpod | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 𝐽 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 61 | 51 54 60 | 3eltr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( ( Id ‘ ( RingCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 62 | eqid | ⊢ ( comp ‘ ( RingCat ‘ 𝑈 ) ) = ( comp ‘ ( RingCat ‘ 𝑈 ) ) | |
| 63 | 11 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → ( RingCat ‘ 𝑈 ) ∈ Cat ) |
| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( RingCat ‘ 𝑈 ) ∈ Cat ) |
| 65 | 15 | adantr | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 67 | 17 | ad2ant2r | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 69 | 1 2 | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 70 | 69 | ad2ant2rl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 72 | 53 | adantr | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
| 73 | simpl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) | |
| 74 | 58 73 | anim12i | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) |
| 75 | 72 74 | jca | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 76 | 1 2 3 | srhmsubclem3 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 77 | 75 76 | syl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 78 | 77 | eleq2d | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) ) |
| 79 | 78 | biimpcd | ⊢ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) → ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) ) |
| 81 | 80 | impcom | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑦 ) ) |
| 82 | 1 2 3 | srhmsubclem3 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 𝐽 𝑧 ) = ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 83 | 82 | adantlr | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 𝐽 𝑧 ) = ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 84 | 83 | eleq2d | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) ) |
| 85 | 84 | biimpd | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) ) |
| 86 | 85 | adantld | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) ) |
| 87 | 86 | imp | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 88 | 12 14 62 64 66 68 71 81 87 | catcocl | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 89 | 11 12 72 14 65 70 | ringchom | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 90 | 89 | eqcomd | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 RingHom 𝑧 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑥 RingHom 𝑧 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 92 | 88 91 | eleqtrrd | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 93 | 3 | a1i | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 94 | oveq12 | ⊢ ( ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑧 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑧 ) ) | |
| 95 | 94 | adantl | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑟 = 𝑥 ∧ 𝑠 = 𝑧 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 96 | 58 | adantr | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) |
| 97 | simprr | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ 𝐶 ) | |
| 98 | ovexd | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 RingHom 𝑧 ) ∈ V ) | |
| 99 | 93 95 96 97 98 | ovmpod | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑥 𝐽 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑥 𝐽 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 101 | 92 100 | eleqtrrd | ⊢ ( ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 102 | 101 | ralrimivva | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 103 | 102 | ralrimivva | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 104 | 61 103 | jca | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( Id ‘ ( RingCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 105 | 104 | ralrimiva | ⊢ ( 𝑈 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐶 ( ( ( Id ‘ ( RingCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 106 | 28 52 62 63 34 | issubc2 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ↔ ( 𝐽 ⊆cat ( Homf ‘ ( RingCat ‘ 𝑈 ) ) ∧ ∀ 𝑥 ∈ 𝐶 ( ( ( Id ‘ ( RingCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RingCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 107 | 44 105 106 | mpbir2and | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) ) |