This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| isssc.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | ||
| isssc.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | ||
| Assertion | isssc | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 2 | isssc.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | |
| 3 | isssc.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) | |
| 4 | brssc | ⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) | |
| 5 | fndm | ⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| 8 | 7 | fndmd | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom 𝐽 = ( 𝑇 × 𝑇 ) ) |
| 9 | 6 8 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → ( 𝑡 × 𝑡 ) = ( 𝑇 × 𝑇 ) ) |
| 10 | 9 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom ( 𝑡 × 𝑡 ) = dom ( 𝑇 × 𝑇 ) ) |
| 11 | dmxpid | ⊢ dom ( 𝑡 × 𝑡 ) = 𝑡 | |
| 12 | dmxpid | ⊢ dom ( 𝑇 × 𝑇 ) = 𝑇 | |
| 13 | 10 11 12 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝑡 = 𝑇 ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑡 × 𝑡 ) → 𝑡 = 𝑇 ) ) |
| 15 | id | ⊢ ( 𝑡 = 𝑇 → 𝑡 = 𝑇 ) | |
| 16 | 15 | sqxpeqd | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 × 𝑡 ) = ( 𝑇 × 𝑇 ) ) |
| 17 | 16 | fneq2d | ⊢ ( 𝑡 = 𝑇 → ( 𝐽 Fn ( 𝑡 × 𝑡 ) ↔ 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
| 18 | 2 17 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑡 = 𝑇 → 𝐽 Fn ( 𝑡 × 𝑡 ) ) ) |
| 19 | 14 18 | impbid | ⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑡 × 𝑡 ) ↔ 𝑡 = 𝑇 ) ) |
| 20 | 19 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝑡 = 𝑇 ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 21 | 20 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ∃ 𝑡 ( 𝑡 = 𝑇 ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 22 | 4 21 | bitrid | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝑡 = 𝑇 ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 23 | pweq | ⊢ ( 𝑡 = 𝑇 → 𝒫 𝑡 = 𝒫 𝑇 ) | |
| 24 | 23 | rexeqdv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 25 | 24 | ceqsexgv | ⊢ ( 𝑇 ∈ 𝑉 → ( ∃ 𝑡 ( 𝑡 = 𝑇 ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → ( ∃ 𝑡 ( 𝑡 = 𝑇 ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 27 | 22 26 | bitrd | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 28 | df-rex | ⊢ ( ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝒫 𝑇 ∧ 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) | |
| 29 | 3anass | ⊢ ( ( 𝐻 ∈ V ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝐻 ∈ V ∧ ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) | |
| 30 | elixp2 | ⊢ ( 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ( 𝐻 ∈ V ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) | |
| 31 | vex | ⊢ 𝑠 ∈ V | |
| 32 | 31 31 | xpex | ⊢ ( 𝑠 × 𝑠 ) ∈ V |
| 33 | fnex | ⊢ ( ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ( 𝑠 × 𝑠 ) ∈ V ) → 𝐻 ∈ V ) | |
| 34 | 32 33 | mpan2 | ⊢ ( 𝐻 Fn ( 𝑠 × 𝑠 ) → 𝐻 ∈ V ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) → 𝐻 ∈ V ) |
| 36 | 35 | pm4.71ri | ⊢ ( ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝐻 ∈ V ∧ ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 37 | 29 30 36 | 3bitr4i | ⊢ ( 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 38 | fndm | ⊢ ( 𝐻 Fn ( 𝑠 × 𝑠 ) → dom 𝐻 = ( 𝑠 × 𝑠 ) ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom 𝐻 = ( 𝑠 × 𝑠 ) ) |
| 40 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 41 | 40 | fndmd | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 42 | 39 41 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → ( 𝑠 × 𝑠 ) = ( 𝑆 × 𝑆 ) ) |
| 43 | 42 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom ( 𝑠 × 𝑠 ) = dom ( 𝑆 × 𝑆 ) ) |
| 44 | dmxpid | ⊢ dom ( 𝑠 × 𝑠 ) = 𝑠 | |
| 45 | dmxpid | ⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 | |
| 46 | 43 44 45 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝑠 = 𝑆 ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑠 × 𝑠 ) → 𝑠 = 𝑆 ) ) |
| 48 | id | ⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) | |
| 49 | 48 | sqxpeqd | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 × 𝑠 ) = ( 𝑆 × 𝑆 ) ) |
| 50 | 49 | fneq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝐻 Fn ( 𝑠 × 𝑠 ) ↔ 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 51 | 1 50 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑠 = 𝑆 → 𝐻 Fn ( 𝑠 × 𝑠 ) ) ) |
| 52 | 47 51 | impbid | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑠 × 𝑠 ) ↔ 𝑠 = 𝑆 ) ) |
| 53 | 52 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐻 Fn ( 𝑠 × 𝑠 ) ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝑠 = 𝑆 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 54 | 37 53 | bitrid | ⊢ ( 𝜑 → ( 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ( 𝑠 = 𝑆 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 55 | 54 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝒫 𝑇 ∧ 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝑠 ∈ 𝒫 𝑇 ∧ ( 𝑠 = 𝑆 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) ) |
| 56 | an12 | ⊢ ( ( 𝑠 ∈ 𝒫 𝑇 ∧ ( 𝑠 = 𝑆 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ↔ ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) | |
| 57 | 55 56 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝒫 𝑇 ∧ 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) ) |
| 58 | 57 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑠 ( 𝑠 ∈ 𝒫 𝑇 ∧ 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) ) |
| 59 | 28 58 | bitrid | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝑇 𝐻 ∈ X 𝑧 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ) ) |
| 60 | exsimpl | ⊢ ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) → ∃ 𝑠 𝑠 = 𝑆 ) | |
| 61 | isset | ⊢ ( 𝑆 ∈ V ↔ ∃ 𝑠 𝑠 = 𝑆 ) | |
| 62 | 60 61 | sylibr | ⊢ ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) → 𝑆 ∈ V ) |
| 63 | 62 | a1i | ⊢ ( 𝜑 → ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) → 𝑆 ∈ V ) ) |
| 64 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑉 ) → 𝑆 ∈ V ) | |
| 65 | 64 | expcom | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑆 ⊆ 𝑇 → 𝑆 ∈ V ) ) |
| 66 | 3 65 | syl | ⊢ ( 𝜑 → ( 𝑆 ⊆ 𝑇 → 𝑆 ∈ V ) ) |
| 67 | 66 | adantrd | ⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) → 𝑆 ∈ V ) ) |
| 68 | 31 | elpw | ⊢ ( 𝑠 ∈ 𝒫 𝑇 ↔ 𝑠 ⊆ 𝑇 ) |
| 69 | sseq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) | |
| 70 | 68 69 | bitrid | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝒫 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) |
| 71 | 49 | raleqdv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) |
| 72 | fvex | ⊢ ( 𝐻 ‘ 𝑧 ) ∈ V | |
| 73 | 72 | elpw | ⊢ ( ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ( 𝐻 ‘ 𝑧 ) ⊆ ( 𝐽 ‘ 𝑧 ) ) |
| 74 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 75 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 76 | 74 75 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 77 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 78 | df-ov | ⊢ ( 𝑥 𝐽 𝑦 ) = ( 𝐽 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 79 | 77 78 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐽 ‘ 𝑧 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 80 | 76 79 | sseq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐻 ‘ 𝑧 ) ⊆ ( 𝐽 ‘ 𝑧 ) ↔ ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 81 | 73 80 | bitrid | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 82 | 81 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) |
| 83 | 71 82 | bitrdi | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 84 | 70 83 | anbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 85 | 84 | ceqsexgv | ⊢ ( 𝑆 ∈ V → ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 86 | 85 | a1i | ⊢ ( 𝜑 → ( 𝑆 ∈ V → ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) ) |
| 87 | 63 67 86 | pm5.21ndd | ⊢ ( 𝜑 → ( ∃ 𝑠 ( 𝑠 = 𝑆 ∧ ( 𝑠 ∈ 𝒫 𝑇 ∧ ∀ 𝑧 ∈ ( 𝑠 × 𝑠 ) ( 𝐻 ‘ 𝑧 ) ∈ 𝒫 ( 𝐽 ‘ 𝑧 ) ) ) ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 88 | 27 59 87 | 3bitrd | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |