This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for srhmsubc . (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | ||
| Assertion | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 2 | srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | |
| 3 | 1 2 | srhmsubclem1 | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( 𝑈 ∩ Ring ) ) |
| 5 | eqid | ⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) | |
| 7 | id | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) | |
| 8 | 5 6 7 | ringcbas | ⊢ ( 𝑈 ∈ 𝑉 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) ) |
| 10 | 4 9 | eleqtrrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |