This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for srhmsubc . (Contributed by AV, 19-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | ||
| srhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | srhmsubclem3 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srhmsubc.s | ⊢ ∀ 𝑟 ∈ 𝑆 𝑟 ∈ Ring | |
| 2 | srhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ 𝑆 ) | |
| 3 | srhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) ) |
| 5 | oveq12 | ⊢ ( ( 𝑟 = 𝑋 ∧ 𝑠 = 𝑌 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑟 = 𝑋 ∧ 𝑠 = 𝑌 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) |
| 9 | simpr | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ 𝐶 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) |
| 11 | ovexd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 RingHom 𝑌 ) ∈ V ) | |
| 12 | 4 6 8 10 11 | ovmpod | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 13 | eqid | ⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) ) | |
| 15 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) | |
| 16 | eqid | ⊢ ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) | |
| 17 | 1 2 | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 18 | 7 17 | sylan2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 19 | 1 2 | srhmsubclem2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 20 | 9 19 | sylan2 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) |
| 21 | 13 14 15 16 18 20 | ringchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 22 | 12 21 | eqtr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐽 𝑌 ) = ( 𝑋 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑌 ) ) |