This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | idrhm | ⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( 𝑅 RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 3 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 4 | 1 | idghm | ⊢ ( 𝑅 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 7 | 6 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 8 | 6 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 8 | idmhm | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 11 | 5 10 | jca | ⊢ ( 𝑅 ∈ Ring → ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 12 | 6 6 | isrhm | ⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 RingHom 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ Ring ) ∧ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
| 13 | 2 2 11 12 | syl21anbrc | ⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( 𝑅 RingHom 𝑅 ) ) |