This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srabn.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| srabn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | srabn | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ Ban ↔ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srabn.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | srabn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | simp2 | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ CMetSp ) | |
| 4 | eqidd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 5 | 1 | a1i | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 | 5 8 | srabase | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 10 | 5 8 | srads | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |
| 11 | 10 | reseq1d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝐴 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 12 | 5 8 | sratopn | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
| 13 | 4 9 11 12 | cmspropd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp ) ) |
| 14 | 3 13 | mpbid | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ CMetSp ) |
| 15 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 16 | 15 | isbn | ⊢ ( 𝐴 ∈ Ban ↔ ( 𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ) |
| 17 | 3anrot | ⊢ ( ( 𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ↔ ( 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) | |
| 18 | 3anass | ⊢ ( ( 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ↔ ( 𝐴 ∈ CMetSp ∧ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) | |
| 19 | 16 17 18 | 3bitri | ⊢ ( 𝐴 ∈ Ban ↔ ( 𝐴 ∈ CMetSp ∧ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
| 20 | 19 | baib | ⊢ ( 𝐴 ∈ CMetSp → ( 𝐴 ∈ Ban ↔ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
| 21 | 14 20 | syl | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ Ban ↔ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
| 22 | 5 8 | srasca | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 23 | 22 | eleq1d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ) |
| 24 | eqid | ⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) | |
| 25 | 24 6 2 | cmsss | ⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 26 | 3 8 25 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 27 | 23 26 | bitr3d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 28 | 1 | sranlm | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |
| 30 | 15 | isnvc2 | ⊢ ( 𝐴 ∈ NrmVec ↔ ( 𝐴 ∈ NrmMod ∧ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
| 31 | 30 | baib | ⊢ ( 𝐴 ∈ NrmMod → ( 𝐴 ∈ NrmVec ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
| 32 | 29 31 | syl | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmVec ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
| 33 | 22 | eleq1d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ DivRing ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
| 34 | 32 33 | bitr4d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmVec ↔ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) |
| 35 | 27 34 | anbi12d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ↔ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) ) |
| 36 | 21 35 | bitrd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ Ban ↔ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) ) |