This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmspropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| cmspropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| cmspropd.3 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| cmspropd.4 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | ||
| Assertion | cmspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmspropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | cmspropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | cmspropd.3 | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 4 | cmspropd.4 | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) | |
| 5 | 1 2 3 4 | mspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
| 6 | 1 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 7 | 6 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 8 | 3 7 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 9 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 10 | 9 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 11 | 8 10 | eqtr3d | ⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 12 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( CMet ‘ ( Base ‘ 𝐾 ) ) = ( CMet ‘ ( Base ‘ 𝐿 ) ) ) |
| 14 | 11 13 | eleq12d | ⊢ ( 𝜑 → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ↔ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 15 | 5 14 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ↔ ( 𝐿 ∈ MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 17 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 18 | 16 17 | iscms | ⊢ ( 𝐾 ∈ CMetSp ↔ ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 20 | eqid | ⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) | |
| 21 | 19 20 | iscms | ⊢ ( 𝐿 ∈ CMetSp ↔ ( 𝐿 ∈ MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 22 | 15 18 21 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp ) ) |