This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isbn.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | isbn | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbn.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | elin | ⊢ ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ↔ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( ( Scalar ‘ 𝑤 ) ∈ CMetSp ↔ 𝐹 ∈ CMetSp ) ) |
| 7 | df-bn | ⊢ Ban = { 𝑤 ∈ ( NrmVec ∩ CMetSp ) ∣ ( Scalar ‘ 𝑤 ) ∈ CMetSp } | |
| 8 | 6 7 | elrab2 | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ ( NrmVec ∩ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) |
| 9 | df-3an | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ) ∧ 𝐹 ∈ CMetSp ) ) | |
| 10 | 3 8 9 | 3bitr4i | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |