This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmbn | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( ringLMod ‘ 𝑅 ) ∈ Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → 𝑅 ∈ CMetSp ) | |
| 2 | cmsms | ⊢ ( 𝑅 ∈ CMetSp → 𝑅 ∈ MetSp ) | |
| 3 | mstps | ⊢ ( 𝑅 ∈ MetSp → 𝑅 ∈ TopSp ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → 𝑅 ∈ TopSp ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 7 | 5 6 | tpsuni | ⊢ ( 𝑅 ∈ TopSp → ( Base ‘ 𝑅 ) = ∪ ( TopOpen ‘ 𝑅 ) ) |
| 8 | 4 7 | syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( Base ‘ 𝑅 ) = ∪ ( TopOpen ‘ 𝑅 ) ) |
| 9 | 6 | tpstop | ⊢ ( 𝑅 ∈ TopSp → ( TopOpen ‘ 𝑅 ) ∈ Top ) |
| 10 | eqid | ⊢ ∪ ( TopOpen ‘ 𝑅 ) = ∪ ( TopOpen ‘ 𝑅 ) | |
| 11 | 10 | topcld | ⊢ ( ( TopOpen ‘ 𝑅 ) ∈ Top → ∪ ( TopOpen ‘ 𝑅 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑅 ) ) ) |
| 12 | 4 9 11 | 3syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ∪ ( TopOpen ‘ 𝑅 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑅 ) ) ) |
| 13 | 8 12 | eqeltrd | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( Base ‘ 𝑅 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑅 ) ) ) |
| 14 | 5 | ressid | ⊢ ( 𝑅 ∈ NrmRing → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 16 | simp2 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → 𝑅 ∈ DivRing ) | |
| 17 | 15 16 | eqeltrd | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ DivRing ) |
| 18 | simp1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → 𝑅 ∈ NrmRing ) | |
| 19 | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → 𝑅 ∈ Ring ) |
| 21 | 5 | subrgid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 23 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 24 | 23 6 | srabn | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) → ( ( ringLMod ‘ 𝑅 ) ∈ Ban ↔ ( ( Base ‘ 𝑅 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑅 ) ) ∧ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ DivRing ) ) ) |
| 25 | 18 1 22 24 | syl3anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( ( ringLMod ‘ 𝑅 ) ∈ Ban ↔ ( ( Base ‘ 𝑅 ) ∈ ( Clsd ‘ ( TopOpen ‘ 𝑅 ) ) ∧ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ∈ DivRing ) ) ) |
| 26 | 13 17 25 | mpbir2and | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp ) → ( ringLMod ‘ 𝑅 ) ∈ Ban ) |