This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmsss.h | ⊢ 𝐾 = ( 𝑀 ↾s 𝐴 ) | |
| cmsss.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | ||
| cmsss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) | ||
| Assertion | cmsss | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐾 ∈ CMetSp ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmsss.h | ⊢ 𝐾 = ( 𝑀 ↾s 𝐴 ) | |
| 2 | cmsss.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 3 | cmsss.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) | |
| 4 | simpr | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 5 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 6 | 4 5 | sylancom | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 7 | 6 | resabs1d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) ) |
| 8 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 9 | 8 | ssex | ⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 11 | eqid | ⊢ ( dist ‘ 𝑀 ) = ( dist ‘ 𝑀 ) | |
| 12 | 1 11 | ressds | ⊢ ( 𝐴 ∈ V → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
| 14 | 1 2 | ressbas2 | ⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( Base ‘ 𝐾 ) ) |
| 16 | 15 | sqxpeqd | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 17 | 13 16 | reseq12d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 18 | 7 17 | eqtrd | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 19 | 15 | fveq2d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( CMet ‘ 𝐴 ) = ( CMet ‘ ( Base ‘ 𝐾 ) ) ) |
| 20 | 18 19 | eleq12d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 21 | eqid | ⊢ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 22 | 2 21 | cmscmet | ⊢ ( 𝑀 ∈ CMetSp → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) ) |
| 24 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 25 | 24 | cmetss | ⊢ ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( CMet ‘ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
| 26 | 23 25 | syl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( CMet ‘ 𝐴 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
| 27 | 20 26 | bitr3d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
| 28 | cmsms | ⊢ ( 𝑀 ∈ CMetSp → 𝑀 ∈ MetSp ) | |
| 29 | ressms | ⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ∈ V ) → ( 𝑀 ↾s 𝐴 ) ∈ MetSp ) | |
| 30 | 1 29 | eqeltrid | ⊢ ( ( 𝑀 ∈ MetSp ∧ 𝐴 ∈ V ) → 𝐾 ∈ MetSp ) |
| 31 | 28 9 30 | syl2an | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ MetSp ) |
| 32 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 33 | eqid | ⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) | |
| 34 | 32 33 | iscms | ⊢ ( 𝐾 ∈ CMetSp ↔ ( 𝐾 ∈ MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 35 | 34 | baib | ⊢ ( 𝐾 ∈ MetSp → ( 𝐾 ∈ CMetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 36 | 31 35 | syl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐾 ∈ CMetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 37 | 28 | adantr | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑀 ∈ MetSp ) |
| 38 | 3 2 21 | mstopn | ⊢ ( 𝑀 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 39 | 37 38 | syl | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
| 41 | 40 | eleq2d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝐴 ∈ ( Clsd ‘ ( MetOpen ‘ ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) ) ) |
| 42 | 27 36 41 | 3bitr4d | ⊢ ( ( 𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐾 ∈ CMetSp ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |