This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srabn.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| srabn.j | |- J = ( TopOpen ` W ) |
||
| Assertion | srabn | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( A e. Ban <-> ( S e. ( Clsd ` J ) /\ ( W |`s S ) e. DivRing ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srabn.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | srabn.j | |- J = ( TopOpen ` W ) |
|
| 3 | simp2 | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> W e. CMetSp ) |
|
| 4 | eqidd | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 5 | 1 | a1i | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
| 9 | 5 8 | srabase | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` A ) ) |
| 10 | 5 8 | srads | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( dist ` W ) = ( dist ` A ) ) |
| 11 | 10 | reseq1d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` A ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 12 | 5 8 | sratopn | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( TopOpen ` W ) = ( TopOpen ` A ) ) |
| 13 | 4 9 11 12 | cmspropd | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( W e. CMetSp <-> A e. CMetSp ) ) |
| 14 | 3 13 | mpbid | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> A e. CMetSp ) |
| 15 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 16 | 15 | isbn | |- ( A e. Ban <-> ( A e. NrmVec /\ A e. CMetSp /\ ( Scalar ` A ) e. CMetSp ) ) |
| 17 | 3anrot | |- ( ( A e. NrmVec /\ A e. CMetSp /\ ( Scalar ` A ) e. CMetSp ) <-> ( A e. CMetSp /\ ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) ) |
|
| 18 | 3anass | |- ( ( A e. CMetSp /\ ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) <-> ( A e. CMetSp /\ ( ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) ) ) |
|
| 19 | 16 17 18 | 3bitri | |- ( A e. Ban <-> ( A e. CMetSp /\ ( ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) ) ) |
| 20 | 19 | baib | |- ( A e. CMetSp -> ( A e. Ban <-> ( ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) ) ) |
| 21 | 14 20 | syl | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( A e. Ban <-> ( ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) ) ) |
| 22 | 5 8 | srasca | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 23 | 22 | eleq1d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( W |`s S ) e. CMetSp <-> ( Scalar ` A ) e. CMetSp ) ) |
| 24 | eqid | |- ( W |`s S ) = ( W |`s S ) |
|
| 25 | 24 6 2 | cmsss | |- ( ( W e. CMetSp /\ S C_ ( Base ` W ) ) -> ( ( W |`s S ) e. CMetSp <-> S e. ( Clsd ` J ) ) ) |
| 26 | 3 8 25 | syl2anc | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( W |`s S ) e. CMetSp <-> S e. ( Clsd ` J ) ) ) |
| 27 | 23 26 | bitr3d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( Scalar ` A ) e. CMetSp <-> S e. ( Clsd ` J ) ) ) |
| 28 | 1 | sranlm | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A e. NrmMod ) |
| 29 | 28 | 3adant2 | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> A e. NrmMod ) |
| 30 | 15 | isnvc2 | |- ( A e. NrmVec <-> ( A e. NrmMod /\ ( Scalar ` A ) e. DivRing ) ) |
| 31 | 30 | baib | |- ( A e. NrmMod -> ( A e. NrmVec <-> ( Scalar ` A ) e. DivRing ) ) |
| 32 | 29 31 | syl | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( A e. NrmVec <-> ( Scalar ` A ) e. DivRing ) ) |
| 33 | 22 | eleq1d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( W |`s S ) e. DivRing <-> ( Scalar ` A ) e. DivRing ) ) |
| 34 | 32 33 | bitr4d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( A e. NrmVec <-> ( W |`s S ) e. DivRing ) ) |
| 35 | 27 34 | anbi12d | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( ( ( Scalar ` A ) e. CMetSp /\ A e. NrmVec ) <-> ( S e. ( Clsd ` J ) /\ ( W |`s S ) e. DivRing ) ) ) |
| 36 | 21 35 | bitrd | |- ( ( W e. NrmRing /\ W e. CMetSp /\ S e. ( SubRing ` W ) ) -> ( A e. Ban <-> ( S e. ( Clsd ` J ) /\ ( W |`s S ) e. DivRing ) ) ) |