This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of 2 is irrational. See zsqrtelqelz for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem , which shows that if A / B = sqrt ( 2 ) , then A and B are even, so A / 2 and B / 2 are smaller representatives, which is absurd. An older version of this proof was included inThe Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on hisFormalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ . (Contributed by NM, 8-Jan-2002) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrt2irr | ⊢ ( √ ‘ 2 ) ∉ ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 2 | breq2 | ⊢ ( 𝑛 = 1 → ( 𝑧 < 𝑛 ↔ 𝑧 < 1 ) ) | |
| 3 | 2 | imbi1d | ⊢ ( 𝑛 = 1 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝑛 = 1 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 5 | breq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑧 < 𝑛 ↔ 𝑧 < 𝑦 ) ) | |
| 6 | 5 | imbi1d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑛 = 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 8 | breq2 | ⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( 𝑧 < 𝑛 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑛 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 11 | nnnlt1 | ⊢ ( 𝑧 ∈ ℕ → ¬ 𝑧 < 1 ) | |
| 12 | 11 | pm2.21d | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 13 | 12 | rgen | ⊢ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) |
| 14 | nnrp | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) | |
| 15 | rphalflt | ⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 / 2 ) < 𝑦 ) |
| 17 | breq1 | ⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑧 < 𝑦 ↔ ( 𝑦 / 2 ) < 𝑦 ) ) | |
| 18 | oveq2 | ⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( 𝑥 / 𝑧 ) = ( 𝑥 / ( 𝑦 / 2 ) ) ) | |
| 19 | 18 | neeq2d | ⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 21 | 17 20 | imbi12d | ⊢ ( 𝑧 = ( 𝑦 / 2 ) → ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 22 | 21 | rspcv | ⊢ ( ( 𝑦 / 2 ) ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 23 | 22 | com13 | ⊢ ( ( 𝑦 / 2 ) < 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 24 | 16 23 | syl | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 25 | simpr | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) | |
| 26 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℂ ) |
| 28 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 30 | 2cnd | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ∈ ℂ ) | |
| 31 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ≠ 0 ) |
| 33 | 2ne0 | ⊢ 2 ≠ 0 | |
| 34 | 33 | a1i | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 2 ≠ 0 ) |
| 35 | 27 29 30 32 34 | divcan7d | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) = ( 𝑧 / 𝑦 ) ) |
| 36 | 25 35 | eqtr4d | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) |
| 37 | simplr | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑧 ∈ ℤ ) | |
| 38 | simpll | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → 𝑦 ∈ ℕ ) | |
| 39 | 37 38 25 | sqrt2irrlem | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( 𝑧 / 2 ) ∈ ℤ ∧ ( 𝑦 / 2 ) ∈ ℕ ) ) |
| 40 | 39 | simprd | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑦 / 2 ) ∈ ℕ ) |
| 41 | 39 | simpld | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( 𝑧 / 2 ) ∈ ℤ ) |
| 42 | oveq1 | ⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( 𝑥 / ( 𝑦 / 2 ) ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) | |
| 43 | 42 | neeq2d | ⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ↔ ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 44 | 43 | rspcv | ⊢ ( ( 𝑧 / 2 ) ∈ ℤ → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 45 | 41 44 | syl | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 46 | 40 45 | embantd | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) ) ) |
| 47 | 46 | necon2bd | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ( ( √ ‘ 2 ) = ( ( 𝑧 / 2 ) / ( 𝑦 / 2 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 48 | 36 47 | mpd | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ∧ ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) |
| 49 | 48 | ex | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( √ ‘ 2 ) = ( 𝑧 / 𝑦 ) → ¬ ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) ) ) |
| 50 | 49 | necon2ad | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 51 | 50 | ralrimdva | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑦 / 2 ) ∈ ℕ → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / ( 𝑦 / 2 ) ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 52 | 24 51 | syld | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 53 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 / 𝑦 ) = ( 𝑧 / 𝑦 ) ) | |
| 54 | 53 | neeq2d | ⊢ ( 𝑥 = 𝑧 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) ) |
| 55 | 54 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ∀ 𝑧 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑧 / 𝑦 ) ) |
| 56 | 52 55 | imbitrrdi | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 57 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 / 𝑧 ) = ( 𝑥 / 𝑦 ) ) | |
| 58 | 57 | neeq2d | ⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 59 | 58 | ralbidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 60 | 59 | ceqsralv | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ) ) |
| 61 | 56 60 | sylibrd | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 62 | 61 | ancld | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 63 | nnleltp1 | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) | |
| 64 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 65 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 66 | leloe | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) | |
| 67 | 64 65 66 | syl2an | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 68 | 63 67 | bitr3d | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 69 | 68 | ancoms | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) ↔ ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) ) ) |
| 70 | 69 | imbi1d | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 71 | jaob | ⊢ ( ( ( 𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) | |
| 72 | 70 71 | bitrdi | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 73 | 72 | ralbidva | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 74 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ℕ ( ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) | |
| 75 | 73 74 | bitrdi | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 = 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) ) |
| 76 | 62 75 | sylibrd | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) ) |
| 77 | 4 7 10 10 13 76 | nnind | ⊢ ( ( 𝑦 + 1 ) ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 78 | 1 77 | syl | ⊢ ( 𝑦 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ) |
| 79 | 65 | ltp1d | ⊢ ( 𝑦 ∈ ℕ → 𝑦 < ( 𝑦 + 1 ) ) |
| 80 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 < ( 𝑦 + 1 ) ↔ 𝑦 < ( 𝑦 + 1 ) ) ) | |
| 81 | df-ne | ⊢ ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑦 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) | |
| 82 | 58 81 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 83 | 82 | ralbidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 84 | ralnex | ⊢ ( ∀ 𝑥 ∈ ℤ ¬ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) | |
| 85 | 83 84 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ↔ ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) |
| 86 | 80 85 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) ↔ ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
| 87 | 86 | rspcv | ⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ∀ 𝑥 ∈ ℤ ( √ ‘ 2 ) ≠ ( 𝑥 / 𝑧 ) ) → ( 𝑦 < ( 𝑦 + 1 ) → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) ) ) |
| 88 | 78 79 87 | mp2d | ⊢ ( 𝑦 ∈ ℕ → ¬ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 89 | 88 | nrex | ⊢ ¬ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) |
| 90 | elq | ⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) | |
| 91 | rexcom | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) | |
| 92 | 90 91 | bitri | ⊢ ( ( √ ‘ 2 ) ∈ ℚ ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℤ ( √ ‘ 2 ) = ( 𝑥 / 𝑦 ) ) |
| 93 | 89 92 | mtbir | ⊢ ¬ ( √ ‘ 2 ) ∈ ℚ |
| 94 | 93 | nelir | ⊢ ( √ ‘ 2 ) ∉ ℚ |