This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sqrt2irr . This is the core of the proof: if A / B = sqrt ( 2 ) , then A and B are even, so A / 2 and B / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001) (Revised by Mario Carneiro, 12-Sep-2015) (Proof shortened by JV, 4-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqrt2irrlem.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| sqrt2irrlem.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | ||
| sqrt2irrlem.3 | ⊢ ( 𝜑 → ( √ ‘ 2 ) = ( 𝐴 / 𝐵 ) ) | ||
| Assertion | sqrt2irrlem | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt2irrlem.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | sqrt2irrlem.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | |
| 3 | sqrt2irrlem.3 | ⊢ ( 𝜑 → ( √ ‘ 2 ) = ( 𝐴 / 𝐵 ) ) | |
| 4 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 5 | 4 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) |
| 6 | 3 | oveq1d | ⊢ ( 𝜑 → ( ( √ ‘ 2 ) ↑ 2 ) = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
| 7 | 5 6 | eqtr3d | ⊢ ( 𝜑 → 2 = ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) |
| 8 | 1 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 9 | 2 | nncnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 | 2 | nnne0d | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 11 | 8 9 10 | sqdivd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
| 12 | 7 11 | eqtrd | ⊢ ( 𝜑 → 2 = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
| 13 | 12 | oveq1d | ⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) ) |
| 14 | 8 | sqcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 15 | 2 | nnsqcld | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 16 | 15 | nncnd | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 17 | 15 | nnne0d | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≠ 0 ) |
| 18 | 14 16 17 | divcan1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 19 | 13 18 | eqtrd | ⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 21 | 2ne0 | ⊢ 2 ≠ 0 | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 2 ≠ 0 ) |
| 23 | 16 4 22 | divcan3d | ⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 2 ) ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 24 | 20 23 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 25 | 24 15 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℕ ) |
| 26 | 25 | nnzd | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 27 | zesq | ⊢ ( 𝐴 ∈ ℤ → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) | |
| 28 | 1 27 | syl | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ↔ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℤ ) ) |
| 29 | 26 28 | mpbird | ⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℤ ) |
| 30 | 4 | sqvald | ⊢ ( 𝜑 → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 32 | 8 4 22 | sqdivd | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 33 | 14 4 4 22 22 | divdiv1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐴 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 34 | 31 32 33 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) ) |
| 35 | 24 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 36 | 34 35 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 37 | zsqcl | ⊢ ( ( 𝐴 / 2 ) ∈ ℤ → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) | |
| 38 | 29 37 | syl | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ↑ 2 ) ∈ ℤ ) |
| 39 | 36 38 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ) |
| 40 | 15 | nnrpd | ⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ+ ) |
| 41 | 40 | rphalfcld | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℝ+ ) |
| 42 | 41 | rpgt0d | ⊢ ( 𝜑 → 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) |
| 43 | elnnz | ⊢ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝐵 ↑ 2 ) / 2 ) ) ) | |
| 44 | 39 42 43 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) |
| 45 | nnesq | ⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) | |
| 46 | 2 45 | syl | ⊢ ( 𝜑 → ( ( 𝐵 / 2 ) ∈ ℕ ↔ ( ( 𝐵 ↑ 2 ) / 2 ) ∈ ℕ ) ) |
| 47 | 44 46 | mpbird | ⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
| 48 | 29 47 | jca | ⊢ ( 𝜑 → ( ( 𝐴 / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |