This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsqrtelqelz | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( √ ‘ 𝐴 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qdencl | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ ) |
| 3 | 2 | nnred | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 4 | 1red | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 1 ∈ ℝ ) | |
| 5 | 2 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 6 | 5 | nn0ge0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 0 ≤ ( denom ‘ ( √ ‘ 𝐴 ) ) ) |
| 7 | 0le1 | ⊢ 0 ≤ 1 | |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 0 ≤ 1 ) |
| 9 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( 1 ↑ 2 ) = 1 ) |
| 11 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | sqsqrtd | ⊢ ( 𝐴 ∈ ℤ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( denom ‘ 𝐴 ) ) |
| 15 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 𝐴 ∈ ℤ ) | |
| 16 | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → 𝐴 ∈ ℚ ) |
| 18 | qden1elz | ⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ 𝐴 ) = 1 ↔ 𝐴 ∈ ℤ ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ 𝐴 ) = 1 ) |
| 21 | 14 20 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 22 | densq | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
| 24 | 10 21 23 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 25 | 3 4 6 8 24 | sq11d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ) |
| 26 | qden1elz | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℚ → ( ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ↔ ( √ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( ( denom ‘ ( √ ‘ 𝐴 ) ) = 1 ↔ ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
| 28 | 25 27 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( √ ‘ 𝐴 ) ∈ ℤ ) |