This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | soxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| Assertion | soxp | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| 2 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 3 | sopo | ⊢ ( 𝑆 Or 𝐵 → 𝑆 Po 𝐵 ) | |
| 4 | 1 | poxp | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |
| 6 | elxp | ⊢ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) | |
| 7 | elxp | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) | |
| 8 | ioran | ⊢ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) | |
| 9 | ioran | ⊢ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) | |
| 10 | ianor | ⊢ ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) | |
| 11 | 10 | anbi2i | ⊢ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ) |
| 12 | 9 11 | bitri | ⊢ ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ) |
| 13 | ianor | ⊢ ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) | |
| 14 | 12 13 | anbi12i | ⊢ ( ( ¬ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) ) |
| 15 | 8 14 | bitri | ⊢ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ↔ ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) ) |
| 16 | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) | |
| 17 | 3orass | ⊢ ( ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ↔ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) | |
| 18 | df-or | ⊢ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ↔ ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ( 𝑎 𝑅 𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ↔ ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
| 20 | 16 19 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( ¬ 𝑎 𝑅 𝑐 → ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ) ) |
| 21 | solin | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) | |
| 22 | 3orass | ⊢ ( ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ↔ ( 𝑏 𝑆 𝑑 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) | |
| 23 | df-or | ⊢ ( ( 𝑏 𝑆 𝑑 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ↔ ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) | |
| 24 | 22 23 | bitri | ⊢ ( ( 𝑏 𝑆 𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ↔ ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
| 25 | 21 24 | sylib | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ¬ 𝑏 𝑆 𝑑 → ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) |
| 26 | 25 | orim2d | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) → ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) ) |
| 27 | 20 26 | im2anan9 | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) → ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 28 | pm2.53 | ⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ¬ 𝑎 = 𝑐 → 𝑐 𝑅 𝑎 ) ) | |
| 29 | orc | ⊢ ( 𝑐 𝑅 𝑎 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) | |
| 30 | 28 29 | syl6 | ⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ¬ 𝑎 = 𝑐 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ¬ 𝑎 = 𝑐 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 32 | orel1 | ⊢ ( ¬ 𝑏 = 𝑑 → ( ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) → 𝑑 𝑆 𝑏 ) ) | |
| 33 | 32 | orim2d | ⊢ ( ¬ 𝑏 = 𝑑 → ( ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) → ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) ) |
| 34 | 33 | anim2d | ⊢ ( ¬ 𝑏 = 𝑑 → ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) ) ) |
| 35 | imor | ⊢ ( ( 𝑎 = 𝑐 → 𝑑 𝑆 𝑏 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) | |
| 36 | 35 | biimpri | ⊢ ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑎 = 𝑐 → 𝑑 𝑆 𝑏 ) ) |
| 37 | 36 | com12 | ⊢ ( 𝑎 = 𝑐 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → 𝑑 𝑆 𝑏 ) ) |
| 38 | equcomi | ⊢ ( 𝑎 = 𝑐 → 𝑐 = 𝑎 ) | |
| 39 | 38 | anim1i | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑑 𝑆 𝑏 ) → ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) |
| 40 | 39 | olcd | ⊢ ( ( 𝑎 = 𝑐 ∧ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) |
| 41 | 40 | ex | ⊢ ( 𝑎 = 𝑐 → ( 𝑑 𝑆 𝑏 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 42 | 37 41 | syld | ⊢ ( 𝑎 = 𝑐 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 43 | 29 | a1d | ⊢ ( 𝑐 𝑅 𝑎 → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 44 | 42 43 | jaoi | ⊢ ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) → ( ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ 𝑑 𝑆 𝑏 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) |
| 46 | 34 45 | syl6com | ⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ¬ 𝑏 = 𝑑 → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 47 | 31 46 | jaod | ⊢ ( ( ( 𝑎 = 𝑐 ∨ 𝑐 𝑅 𝑎 ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ( 𝑏 = 𝑑 ∨ 𝑑 𝑆 𝑏 ) ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 48 | 27 47 | syl6 | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) → ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 49 | 48 | impd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ¬ 𝑎 𝑅 𝑐 ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 𝑆 𝑑 ) ) ∧ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 50 | 15 49 | biimtrid | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 51 | df-3or | ⊢ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) | |
| 52 | df-or | ⊢ ( ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) | |
| 53 | 51 52 | bitri | ⊢ ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ↔ ( ¬ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 54 | 50 53 | sylibr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 55 | pm3.2 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) ) | |
| 56 | 55 | ad2ant2l | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) ) |
| 57 | idd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) | |
| 58 | simpr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) | |
| 59 | 58 | ancomd | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ) |
| 60 | simpr | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) | |
| 61 | 60 | ancomd | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) |
| 62 | pm3.2 | ⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) → ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) | |
| 63 | 59 61 62 | syl2an | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) → ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 64 | 56 57 63 | 3orim123d | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
| 65 | 54 64 | mpd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) ∧ ( 𝑆 Or 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 66 | 65 | an4s | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 67 | 66 | expcom | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
| 68 | 67 | an4s | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
| 69 | breq12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) | |
| 70 | eqeq12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 = 𝑢 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ) ) | |
| 71 | breq12 | ⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑡 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑢 𝑇 𝑡 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) | |
| 72 | 71 | ancoms | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑢 𝑇 𝑡 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 73 | 69 70 72 | 3orbi123d | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ↔ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 74 | 1 | xporderlem | ⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) |
| 75 | vex | ⊢ 𝑎 ∈ V | |
| 76 | vex | ⊢ 𝑏 ∈ V | |
| 77 | 75 76 | opth | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ↔ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) |
| 78 | 1 | xporderlem | ⊢ ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) |
| 79 | 74 77 78 | 3orbi123i | ⊢ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑎 , 𝑏 〉 = 〈 𝑐 , 𝑑 〉 ∨ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) |
| 80 | 73 79 | bitrdi | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) ) ) |
| 81 | 80 | biimprcd | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∨ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ∨ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑎 ∨ ( 𝑐 = 𝑎 ∧ 𝑑 𝑆 𝑏 ) ) ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 82 | 68 81 | syl6 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 83 | 82 | com3r | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 84 | 83 | imp | ⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 85 | 84 | an4s | ⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 86 | 85 | expcom | ⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 87 | 86 | exlimivv | ⊢ ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 88 | 87 | com12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 89 | 88 | exlimivv | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) ) |
| 90 | 89 | imp | ⊢ ( ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 91 | 6 7 90 | syl2anb | ⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 92 | 91 | com12 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) |
| 93 | 92 | ralrimivv | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) |
| 94 | df-so | ⊢ ( 𝑇 Or ( 𝐴 × 𝐵 ) ↔ ( 𝑇 Po ( 𝐴 × 𝐵 ) ∧ ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ( 𝑡 𝑇 𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢 𝑇 𝑡 ) ) ) | |
| 95 | 5 93 94 | sylanbrc | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |