This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | poxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| Assertion | poxp | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| 2 | elxp | ⊢ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) | |
| 3 | elxp | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) | |
| 4 | elxp | ⊢ ( 𝑣 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) | |
| 5 | 3an6 | ⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) ↔ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) ) | |
| 6 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ¬ 𝑎 𝑅 𝑎 ) | |
| 7 | 6 | ex | ⊢ ( 𝑅 Po 𝐴 → ( 𝑎 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑎 ) ) |
| 8 | poirr | ⊢ ( ( 𝑆 Po 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 𝑆 𝑏 ) | |
| 9 | 8 | intnand | ⊢ ( ( 𝑆 Po 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) |
| 10 | 9 | ex | ⊢ ( 𝑆 Po 𝐵 → ( 𝑏 ∈ 𝐵 → ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) |
| 11 | 7 10 | im2anan9 | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ¬ 𝑎 𝑅 𝑎 ∧ ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 12 | ioran | ⊢ ( ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ↔ ( ¬ 𝑎 𝑅 𝑎 ∧ ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) | |
| 13 | 11 12 | imbitrrdi | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) |
| 15 | 14 | intnand | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 16 | 15 | 3ad2antr1 | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 17 | an4 | ⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) ∧ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ) | |
| 18 | 3an6 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) | |
| 19 | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) → 𝑎 𝑅 𝑒 ) ) | |
| 20 | 19 | 3impia | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) ) → 𝑎 𝑅 𝑒 ) |
| 21 | 20 | orcd | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
| 22 | 21 | 3expia | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 23 | 22 | expdimp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( 𝑐 𝑅 𝑒 → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 24 | breq2 | ⊢ ( 𝑐 = 𝑒 → ( 𝑎 𝑅 𝑐 ↔ 𝑎 𝑅 𝑒 ) ) | |
| 25 | 24 | biimpa | ⊢ ( ( 𝑐 = 𝑒 ∧ 𝑎 𝑅 𝑐 ) → 𝑎 𝑅 𝑒 ) |
| 26 | 25 | orcd | ⊢ ( ( 𝑐 = 𝑒 ∧ 𝑎 𝑅 𝑐 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
| 27 | 26 | expcom | ⊢ ( 𝑎 𝑅 𝑐 → ( 𝑐 = 𝑒 → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 28 | 27 | adantrd | ⊢ ( 𝑎 𝑅 𝑐 → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 30 | 23 29 | jaod | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑐 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 32 | potr | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑏 𝑆 𝑑 ∧ 𝑑 𝑆 𝑓 ) → 𝑏 𝑆 𝑓 ) ) | |
| 33 | 32 | expdimp | ⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( 𝑑 𝑆 𝑓 → 𝑏 𝑆 𝑓 ) ) |
| 34 | 33 | anim2d | ⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
| 35 | 34 | orim2d | ⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 36 | breq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 𝑅 𝑒 ↔ 𝑐 𝑅 𝑒 ) ) | |
| 37 | equequ1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 = 𝑒 ↔ 𝑐 = 𝑒 ) ) | |
| 38 | 37 | anbi1d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ↔ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
| 39 | 36 38 | orbi12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ↔ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 40 | 39 | imbi2d | ⊢ ( 𝑎 = 𝑐 → ( ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ↔ ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 41 | 35 40 | imbitrrid | ⊢ ( 𝑎 = 𝑐 → ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 42 | 41 | expd | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑏 𝑆 𝑑 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
| 43 | 42 | com12 | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑎 = 𝑐 → ( 𝑏 𝑆 𝑑 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
| 44 | 43 | impd | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 45 | 31 44 | jaao | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 46 | 45 | impd | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 47 | 46 | an4s | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 48 | 18 47 | sylan2b | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 49 | an4 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) | |
| 50 | 49 | biimpi | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
| 51 | 50 | 3adant2 | ⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
| 53 | 48 52 | jctild | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 54 | 53 | adantld | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) ∧ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 55 | 17 54 | biimtrid | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 56 | 16 55 | jca | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
| 57 | breq12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑡 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑡 𝑇 𝑡 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) | |
| 58 | 57 | anidms | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( 𝑡 𝑇 𝑡 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 59 | 58 | notbid | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( ¬ 𝑡 𝑇 𝑡 ↔ ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ¬ 𝑡 𝑇 𝑡 ↔ ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 61 | breq12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) | |
| 62 | 61 | 3adant3 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) |
| 63 | breq12 | ⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑢 𝑇 𝑣 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) | |
| 64 | 63 | 3adant1 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑢 𝑇 𝑣 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
| 65 | 62 64 | anbi12d | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) ↔ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) |
| 66 | breq12 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑣 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) | |
| 67 | 66 | 3adant2 | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑣 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
| 68 | 65 67 | imbi12d | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ↔ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) |
| 69 | 60 68 | anbi12d | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ↔ ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ∧ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) ) |
| 70 | 1 | xporderlem | ⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 71 | 70 | notbii | ⊢ ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
| 72 | 1 | xporderlem | ⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) |
| 73 | 1 | xporderlem | ⊢ ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) |
| 74 | 72 73 | anbi12i | ⊢ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ) |
| 75 | 1 | xporderlem | ⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
| 76 | 74 75 | imbi12i | ⊢ ( ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ↔ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
| 77 | 71 76 | anbi12i | ⊢ ( ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ∧ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ↔ ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
| 78 | 69 77 | bitrdi | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ↔ ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) ) |
| 79 | 56 78 | imbitrrid | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 80 | 79 | expcomd | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
| 81 | 80 | imp | ⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 82 | 5 81 | sylbi | ⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 83 | 82 | 3exp | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 84 | 83 | com3l | ⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 85 | 84 | exlimivv | ⊢ ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 86 | 85 | com3l | ⊢ ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 87 | 86 | exlimivv | ⊢ ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 88 | 87 | com3l | ⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 89 | 88 | exlimivv | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
| 90 | 89 | 3imp | ⊢ ( ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 91 | 2 3 4 90 | syl3anb | ⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 92 | 91 | 3expia | ⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
| 93 | 92 | com3r | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
| 94 | 93 | imp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
| 95 | 94 | ralrimiv | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) → ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) |
| 96 | 95 | ralrimivva | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) |
| 97 | df-po | ⊢ ( 𝑇 Po ( 𝐴 × 𝐵 ) ↔ ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) | |
| 98 | 96 97 | sylibr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |