This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | soxp.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| Assertion | soxp | |- ( ( R Or A /\ S Or B ) -> T Or ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soxp.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| 2 | sopo | |- ( R Or A -> R Po A ) |
|
| 3 | sopo | |- ( S Or B -> S Po B ) |
|
| 4 | 1 | poxp | |- ( ( R Po A /\ S Po B ) -> T Po ( A X. B ) ) |
| 5 | 2 3 4 | syl2an | |- ( ( R Or A /\ S Or B ) -> T Po ( A X. B ) ) |
| 6 | elxp | |- ( t e. ( A X. B ) <-> E. a E. b ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) |
|
| 7 | elxp | |- ( u e. ( A X. B ) <-> E. c E. d ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) ) |
|
| 8 | ioran | |- ( -. ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) <-> ( -. ( a R c \/ ( a = c /\ b S d ) ) /\ -. ( a = c /\ b = d ) ) ) |
|
| 9 | ioran | |- ( -. ( a R c \/ ( a = c /\ b S d ) ) <-> ( -. a R c /\ -. ( a = c /\ b S d ) ) ) |
|
| 10 | ianor | |- ( -. ( a = c /\ b S d ) <-> ( -. a = c \/ -. b S d ) ) |
|
| 11 | 10 | anbi2i | |- ( ( -. a R c /\ -. ( a = c /\ b S d ) ) <-> ( -. a R c /\ ( -. a = c \/ -. b S d ) ) ) |
| 12 | 9 11 | bitri | |- ( -. ( a R c \/ ( a = c /\ b S d ) ) <-> ( -. a R c /\ ( -. a = c \/ -. b S d ) ) ) |
| 13 | ianor | |- ( -. ( a = c /\ b = d ) <-> ( -. a = c \/ -. b = d ) ) |
|
| 14 | 12 13 | anbi12i | |- ( ( -. ( a R c \/ ( a = c /\ b S d ) ) /\ -. ( a = c /\ b = d ) ) <-> ( ( -. a R c /\ ( -. a = c \/ -. b S d ) ) /\ ( -. a = c \/ -. b = d ) ) ) |
| 15 | 8 14 | bitri | |- ( -. ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) <-> ( ( -. a R c /\ ( -. a = c \/ -. b S d ) ) /\ ( -. a = c \/ -. b = d ) ) ) |
| 16 | solin | |- ( ( R Or A /\ ( a e. A /\ c e. A ) ) -> ( a R c \/ a = c \/ c R a ) ) |
|
| 17 | 3orass | |- ( ( a R c \/ a = c \/ c R a ) <-> ( a R c \/ ( a = c \/ c R a ) ) ) |
|
| 18 | df-or | |- ( ( a R c \/ ( a = c \/ c R a ) ) <-> ( -. a R c -> ( a = c \/ c R a ) ) ) |
|
| 19 | 17 18 | bitri | |- ( ( a R c \/ a = c \/ c R a ) <-> ( -. a R c -> ( a = c \/ c R a ) ) ) |
| 20 | 16 19 | sylib | |- ( ( R Or A /\ ( a e. A /\ c e. A ) ) -> ( -. a R c -> ( a = c \/ c R a ) ) ) |
| 21 | solin | |- ( ( S Or B /\ ( b e. B /\ d e. B ) ) -> ( b S d \/ b = d \/ d S b ) ) |
|
| 22 | 3orass | |- ( ( b S d \/ b = d \/ d S b ) <-> ( b S d \/ ( b = d \/ d S b ) ) ) |
|
| 23 | df-or | |- ( ( b S d \/ ( b = d \/ d S b ) ) <-> ( -. b S d -> ( b = d \/ d S b ) ) ) |
|
| 24 | 22 23 | bitri | |- ( ( b S d \/ b = d \/ d S b ) <-> ( -. b S d -> ( b = d \/ d S b ) ) ) |
| 25 | 21 24 | sylib | |- ( ( S Or B /\ ( b e. B /\ d e. B ) ) -> ( -. b S d -> ( b = d \/ d S b ) ) ) |
| 26 | 25 | orim2d | |- ( ( S Or B /\ ( b e. B /\ d e. B ) ) -> ( ( -. a = c \/ -. b S d ) -> ( -. a = c \/ ( b = d \/ d S b ) ) ) ) |
| 27 | 20 26 | im2anan9 | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( -. a R c /\ ( -. a = c \/ -. b S d ) ) -> ( ( a = c \/ c R a ) /\ ( -. a = c \/ ( b = d \/ d S b ) ) ) ) ) |
| 28 | pm2.53 | |- ( ( a = c \/ c R a ) -> ( -. a = c -> c R a ) ) |
|
| 29 | orc | |- ( c R a -> ( c R a \/ ( c = a /\ d S b ) ) ) |
|
| 30 | 28 29 | syl6 | |- ( ( a = c \/ c R a ) -> ( -. a = c -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 31 | 30 | adantr | |- ( ( ( a = c \/ c R a ) /\ ( -. a = c \/ ( b = d \/ d S b ) ) ) -> ( -. a = c -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 32 | orel1 | |- ( -. b = d -> ( ( b = d \/ d S b ) -> d S b ) ) |
|
| 33 | 32 | orim2d | |- ( -. b = d -> ( ( -. a = c \/ ( b = d \/ d S b ) ) -> ( -. a = c \/ d S b ) ) ) |
| 34 | 33 | anim2d | |- ( -. b = d -> ( ( ( a = c \/ c R a ) /\ ( -. a = c \/ ( b = d \/ d S b ) ) ) -> ( ( a = c \/ c R a ) /\ ( -. a = c \/ d S b ) ) ) ) |
| 35 | imor | |- ( ( a = c -> d S b ) <-> ( -. a = c \/ d S b ) ) |
|
| 36 | 35 | biimpri | |- ( ( -. a = c \/ d S b ) -> ( a = c -> d S b ) ) |
| 37 | 36 | com12 | |- ( a = c -> ( ( -. a = c \/ d S b ) -> d S b ) ) |
| 38 | equcomi | |- ( a = c -> c = a ) |
|
| 39 | 38 | anim1i | |- ( ( a = c /\ d S b ) -> ( c = a /\ d S b ) ) |
| 40 | 39 | olcd | |- ( ( a = c /\ d S b ) -> ( c R a \/ ( c = a /\ d S b ) ) ) |
| 41 | 40 | ex | |- ( a = c -> ( d S b -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 42 | 37 41 | syld | |- ( a = c -> ( ( -. a = c \/ d S b ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 43 | 29 | a1d | |- ( c R a -> ( ( -. a = c \/ d S b ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 44 | 42 43 | jaoi | |- ( ( a = c \/ c R a ) -> ( ( -. a = c \/ d S b ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 45 | 44 | imp | |- ( ( ( a = c \/ c R a ) /\ ( -. a = c \/ d S b ) ) -> ( c R a \/ ( c = a /\ d S b ) ) ) |
| 46 | 34 45 | syl6com | |- ( ( ( a = c \/ c R a ) /\ ( -. a = c \/ ( b = d \/ d S b ) ) ) -> ( -. b = d -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 47 | 31 46 | jaod | |- ( ( ( a = c \/ c R a ) /\ ( -. a = c \/ ( b = d \/ d S b ) ) ) -> ( ( -. a = c \/ -. b = d ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 48 | 27 47 | syl6 | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( -. a R c /\ ( -. a = c \/ -. b S d ) ) -> ( ( -. a = c \/ -. b = d ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
| 49 | 48 | impd | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( ( -. a R c /\ ( -. a = c \/ -. b S d ) ) /\ ( -. a = c \/ -. b = d ) ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 50 | 15 49 | biimtrid | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( -. ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 51 | df-3or | |- ( ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) <-> ( ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) ) |
|
| 52 | df-or | |- ( ( ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) <-> ( -. ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
|
| 53 | 51 52 | bitri | |- ( ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) <-> ( -. ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) ) -> ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 54 | 50 53 | sylibr | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 55 | pm3.2 | |- ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) -> ( ( a R c \/ ( a = c /\ b S d ) ) -> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) ) |
|
| 56 | 55 | ad2ant2l | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( a R c \/ ( a = c /\ b S d ) ) -> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) ) |
| 57 | idd | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( a = c /\ b = d ) -> ( a = c /\ b = d ) ) ) |
|
| 58 | simpr | |- ( ( R Or A /\ ( a e. A /\ c e. A ) ) -> ( a e. A /\ c e. A ) ) |
|
| 59 | 58 | ancomd | |- ( ( R Or A /\ ( a e. A /\ c e. A ) ) -> ( c e. A /\ a e. A ) ) |
| 60 | simpr | |- ( ( S Or B /\ ( b e. B /\ d e. B ) ) -> ( b e. B /\ d e. B ) ) |
|
| 61 | 60 | ancomd | |- ( ( S Or B /\ ( b e. B /\ d e. B ) ) -> ( d e. B /\ b e. B ) ) |
| 62 | pm3.2 | |- ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) -> ( ( c R a \/ ( c = a /\ d S b ) ) -> ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
|
| 63 | 59 61 62 | syl2an | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( c R a \/ ( c = a /\ d S b ) ) -> ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
| 64 | 56 57 63 | 3orim123d | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( ( a R c \/ ( a = c /\ b S d ) ) \/ ( a = c /\ b = d ) \/ ( c R a \/ ( c = a /\ d S b ) ) ) -> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) ) |
| 65 | 54 64 | mpd | |- ( ( ( R Or A /\ ( a e. A /\ c e. A ) ) /\ ( S Or B /\ ( b e. B /\ d e. B ) ) ) -> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
| 66 | 65 | an4s | |- ( ( ( R Or A /\ S Or B ) /\ ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) ) -> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
| 67 | 66 | expcom | |- ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) ) |
| 68 | 67 | an4s | |- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) ) |
| 69 | breq12 | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( t T u <-> <. a , b >. T <. c , d >. ) ) |
|
| 70 | eqeq12 | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( t = u <-> <. a , b >. = <. c , d >. ) ) |
|
| 71 | breq12 | |- ( ( u = <. c , d >. /\ t = <. a , b >. ) -> ( u T t <-> <. c , d >. T <. a , b >. ) ) |
|
| 72 | 71 | ancoms | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( u T t <-> <. c , d >. T <. a , b >. ) ) |
| 73 | 69 70 72 | 3orbi123d | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( ( t T u \/ t = u \/ u T t ) <-> ( <. a , b >. T <. c , d >. \/ <. a , b >. = <. c , d >. \/ <. c , d >. T <. a , b >. ) ) ) |
| 74 | 1 | xporderlem | |- ( <. a , b >. T <. c , d >. <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 75 | vex | |- a e. _V |
|
| 76 | vex | |- b e. _V |
|
| 77 | 75 76 | opth | |- ( <. a , b >. = <. c , d >. <-> ( a = c /\ b = d ) ) |
| 78 | 1 | xporderlem | |- ( <. c , d >. T <. a , b >. <-> ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) |
| 79 | 74 77 78 | 3orbi123i | |- ( ( <. a , b >. T <. c , d >. \/ <. a , b >. = <. c , d >. \/ <. c , d >. T <. a , b >. ) <-> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) |
| 80 | 73 79 | bitrdi | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( ( t T u \/ t = u \/ u T t ) <-> ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) ) ) |
| 81 | 80 | biimprcd | |- ( ( ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) \/ ( a = c /\ b = d ) \/ ( ( ( c e. A /\ a e. A ) /\ ( d e. B /\ b e. B ) ) /\ ( c R a \/ ( c = a /\ d S b ) ) ) ) -> ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 82 | 68 81 | syl6 | |- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 83 | 82 | com3r | |- ( ( t = <. a , b >. /\ u = <. c , d >. ) -> ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 84 | 83 | imp | |- ( ( ( t = <. a , b >. /\ u = <. c , d >. ) /\ ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 85 | 84 | an4s | |- ( ( ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 86 | 85 | expcom | |- ( ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) -> ( ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 87 | 86 | exlimivv | |- ( E. c E. d ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) -> ( ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 88 | 87 | com12 | |- ( ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( E. c E. d ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 89 | 88 | exlimivv | |- ( E. a E. b ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) -> ( E. c E. d ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) ) |
| 90 | 89 | imp | |- ( ( E. a E. b ( t = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ E. c E. d ( u = <. c , d >. /\ ( c e. A /\ d e. B ) ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 91 | 6 7 90 | syl2anb | |- ( ( t e. ( A X. B ) /\ u e. ( A X. B ) ) -> ( ( R Or A /\ S Or B ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 92 | 91 | com12 | |- ( ( R Or A /\ S Or B ) -> ( ( t e. ( A X. B ) /\ u e. ( A X. B ) ) -> ( t T u \/ t = u \/ u T t ) ) ) |
| 93 | 92 | ralrimivv | |- ( ( R Or A /\ S Or B ) -> A. t e. ( A X. B ) A. u e. ( A X. B ) ( t T u \/ t = u \/ u T t ) ) |
| 94 | df-so | |- ( T Or ( A X. B ) <-> ( T Po ( A X. B ) /\ A. t e. ( A X. B ) A. u e. ( A X. B ) ( t T u \/ t = u \/ u T t ) ) ) |
|
| 95 | 5 93 94 | sylanbrc | |- ( ( R Or A /\ S Or B ) -> T Or ( A X. B ) ) |