This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an isomorphism from an ordinal A onto B , which is a subset of the ordinals, then F is a strictly monotonic function. Exercise 3 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 24-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiso | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → Smo 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 | ffdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) | |
| 5 | 4 | simpld | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
| 6 | fss | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ 𝐵 ⊆ On ) → 𝐹 : dom 𝐹 ⟶ On ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ On ) → 𝐹 : dom 𝐹 ⟶ On ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → 𝐹 : dom 𝐹 ⟶ On ) |
| 9 | 3 8 | syl3an1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → 𝐹 : dom 𝐹 ⟶ On ) |
| 10 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 = dom 𝐹 ) |
| 12 | ordeq | ⊢ ( 𝐴 = dom 𝐹 → ( Ord 𝐴 ↔ Ord dom 𝐹 ) ) | |
| 13 | 1 2 11 12 | 4syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( Ord 𝐴 ↔ Ord dom 𝐹 ) ) |
| 14 | 13 | biimpa | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ) → Ord dom 𝐹 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → Ord dom 𝐹 ) |
| 16 | 10 | eleq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
| 17 | 10 | eleq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 19 | 1 2 18 | 3syl | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 20 | isorel | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) | |
| 21 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 22 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 23 | 22 | epeli | ⊢ ( ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 24 | 20 21 23 | 3bitr3g | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 24 | biimpd | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 25 | ex | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 27 | 19 26 | sylbid | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 28 | 27 | ralrimivv | ⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | df-smo | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ∈ 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 31 | 9 15 29 30 | syl3anbrc | ⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → Smo 𝐹 ) |