This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an isomorphism from an ordinal A onto B , which is a subset of the ordinals, then F is a strictly monotonic function. Exercise 3 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 24-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiso | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> Smo F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o | |- ( F Isom _E , _E ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 2 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 3 | 1 2 | syl | |- ( F Isom _E , _E ( A , B ) -> F : A --> B ) |
| 4 | ffdm | |- ( F : A --> B -> ( F : dom F --> B /\ dom F C_ A ) ) |
|
| 5 | 4 | simpld | |- ( F : A --> B -> F : dom F --> B ) |
| 6 | fss | |- ( ( F : dom F --> B /\ B C_ On ) -> F : dom F --> On ) |
|
| 7 | 5 6 | sylan | |- ( ( F : A --> B /\ B C_ On ) -> F : dom F --> On ) |
| 8 | 7 | 3adant2 | |- ( ( F : A --> B /\ Ord A /\ B C_ On ) -> F : dom F --> On ) |
| 9 | 3 8 | syl3an1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> F : dom F --> On ) |
| 10 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 11 | 10 | eqcomd | |- ( F : A --> B -> A = dom F ) |
| 12 | ordeq | |- ( A = dom F -> ( Ord A <-> Ord dom F ) ) |
|
| 13 | 1 2 11 12 | 4syl | |- ( F Isom _E , _E ( A , B ) -> ( Ord A <-> Ord dom F ) ) |
| 14 | 13 | biimpa | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A ) -> Ord dom F ) |
| 15 | 14 | 3adant3 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> Ord dom F ) |
| 16 | 10 | eleq2d | |- ( F : A --> B -> ( x e. dom F <-> x e. A ) ) |
| 17 | 10 | eleq2d | |- ( F : A --> B -> ( y e. dom F <-> y e. A ) ) |
| 18 | 16 17 | anbi12d | |- ( F : A --> B -> ( ( x e. dom F /\ y e. dom F ) <-> ( x e. A /\ y e. A ) ) ) |
| 19 | 1 2 18 | 3syl | |- ( F Isom _E , _E ( A , B ) -> ( ( x e. dom F /\ y e. dom F ) <-> ( x e. A /\ y e. A ) ) ) |
| 20 | isorel | |- ( ( F Isom _E , _E ( A , B ) /\ ( x e. A /\ y e. A ) ) -> ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) |
|
| 21 | epel | |- ( x _E y <-> x e. y ) |
|
| 22 | fvex | |- ( F ` y ) e. _V |
|
| 23 | 22 | epeli | |- ( ( F ` x ) _E ( F ` y ) <-> ( F ` x ) e. ( F ` y ) ) |
| 24 | 20 21 23 | 3bitr3g | |- ( ( F Isom _E , _E ( A , B ) /\ ( x e. A /\ y e. A ) ) -> ( x e. y <-> ( F ` x ) e. ( F ` y ) ) ) |
| 25 | 24 | biimpd | |- ( ( F Isom _E , _E ( A , B ) /\ ( x e. A /\ y e. A ) ) -> ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) |
| 26 | 25 | ex | |- ( F Isom _E , _E ( A , B ) -> ( ( x e. A /\ y e. A ) -> ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) ) |
| 27 | 19 26 | sylbid | |- ( F Isom _E , _E ( A , B ) -> ( ( x e. dom F /\ y e. dom F ) -> ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) ) |
| 28 | 27 | ralrimivv | |- ( F Isom _E , _E ( A , B ) -> A. x e. dom F A. y e. dom F ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> A. x e. dom F A. y e. dom F ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) |
| 30 | df-smo | |- ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. dom F ( x e. y -> ( F ` x ) e. ( F ` y ) ) ) ) |
|
| 31 | 9 15 29 30 | syl3anbrc | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> Smo F ) |