This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a strictly monotone ordinal function. Definition 7.46 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 15-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-smo | ⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | wsmo | ⊢ Smo 𝐴 |
| 2 | 0 | cdm | ⊢ dom 𝐴 |
| 3 | con0 | ⊢ On | |
| 4 | 2 3 0 | wf | ⊢ 𝐴 : dom 𝐴 ⟶ On |
| 5 | 2 | word | ⊢ Ord dom 𝐴 |
| 6 | vx | ⊢ 𝑥 | |
| 7 | vy | ⊢ 𝑦 | |
| 8 | 6 | cv | ⊢ 𝑥 |
| 9 | 7 | cv | ⊢ 𝑦 |
| 10 | 8 9 | wcel | ⊢ 𝑥 ∈ 𝑦 |
| 11 | 8 0 | cfv | ⊢ ( 𝐴 ‘ 𝑥 ) |
| 12 | 9 0 | cfv | ⊢ ( 𝐴 ‘ 𝑦 ) |
| 13 | 11 12 | wcel | ⊢ ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) |
| 14 | 10 13 | wi | ⊢ ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 15 | 14 7 2 | wral | ⊢ ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 16 | 15 6 2 | wral | ⊢ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 17 | 4 5 16 | w3a | ⊢ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 18 | 1 17 | wb | ⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |