This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smobeth | ⊢ Smo ( card ∘ 𝑅1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 | ⊢ card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On | |
| 2 | ffun | ⊢ ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On → Fun card ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun card |
| 4 | r1fnon | ⊢ 𝑅1 Fn On | |
| 5 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 6 | 4 5 | ax-mp | ⊢ Fun 𝑅1 |
| 7 | funco | ⊢ ( ( Fun card ∧ Fun 𝑅1 ) → Fun ( card ∘ 𝑅1 ) ) | |
| 8 | 3 6 7 | mp2an | ⊢ Fun ( card ∘ 𝑅1 ) |
| 9 | funfn | ⊢ ( Fun ( card ∘ 𝑅1 ) ↔ ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 ) ) | |
| 10 | 8 9 | mpbi | ⊢ ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 ) |
| 11 | rnco | ⊢ ran ( card ∘ 𝑅1 ) = ran ( card ↾ ran 𝑅1 ) | |
| 12 | resss | ⊢ ( card ↾ ran 𝑅1 ) ⊆ card | |
| 13 | 12 | rnssi | ⊢ ran ( card ↾ ran 𝑅1 ) ⊆ ran card |
| 14 | frn | ⊢ ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On → ran card ⊆ On ) | |
| 15 | 1 14 | ax-mp | ⊢ ran card ⊆ On |
| 16 | 13 15 | sstri | ⊢ ran ( card ↾ ran 𝑅1 ) ⊆ On |
| 17 | 11 16 | eqsstri | ⊢ ran ( card ∘ 𝑅1 ) ⊆ On |
| 18 | df-f | ⊢ ( ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On ↔ ( ( card ∘ 𝑅1 ) Fn dom ( card ∘ 𝑅1 ) ∧ ran ( card ∘ 𝑅1 ) ⊆ On ) ) | |
| 19 | 10 17 18 | mpbir2an | ⊢ ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On |
| 20 | dmco | ⊢ dom ( card ∘ 𝑅1 ) = ( ◡ 𝑅1 “ dom card ) | |
| 21 | 20 | feq2i | ⊢ ( ( card ∘ 𝑅1 ) : dom ( card ∘ 𝑅1 ) ⟶ On ↔ ( card ∘ 𝑅1 ) : ( ◡ 𝑅1 “ dom card ) ⟶ On ) |
| 22 | 19 21 | mpbi | ⊢ ( card ∘ 𝑅1 ) : ( ◡ 𝑅1 “ dom card ) ⟶ On |
| 23 | elpreima | ⊢ ( 𝑅1 Fn On → ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ↔ ( 𝑥 ∈ On ∧ ( 𝑅1 ‘ 𝑥 ) ∈ dom card ) ) ) | |
| 24 | 4 23 | ax-mp | ⊢ ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ↔ ( 𝑥 ∈ On ∧ ( 𝑅1 ‘ 𝑥 ) ∈ dom card ) ) |
| 25 | 24 | simplbi | ⊢ ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) → 𝑥 ∈ On ) |
| 26 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 27 | 25 26 | sylan | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 28 | 24 | simprbi | ⊢ ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) → ( 𝑅1 ‘ 𝑥 ) ∈ dom card ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) ∈ dom card ) |
| 30 | r1ord2 | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 31 | 30 | imp | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 32 | 25 31 | sylan | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 33 | ssnum | ⊢ ( ( ( 𝑅1 ‘ 𝑥 ) ∈ dom card ∧ ( 𝑅1 ‘ 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑅1 ‘ 𝑦 ) ∈ dom card ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ∈ dom card ) |
| 35 | elpreima | ⊢ ( 𝑅1 Fn On → ( 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) ↔ ( 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ dom card ) ) ) | |
| 36 | 4 35 | ax-mp | ⊢ ( 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) ↔ ( 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ dom card ) ) |
| 37 | 27 34 36 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) ) |
| 38 | 37 | rgen2 | ⊢ ∀ 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) |
| 39 | dftr5 | ⊢ ( Tr ( ◡ 𝑅1 “ dom card ) ↔ ∀ 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) ) | |
| 40 | 38 39 | mpbir | ⊢ Tr ( ◡ 𝑅1 “ dom card ) |
| 41 | cnvimass | ⊢ ( ◡ 𝑅1 “ dom card ) ⊆ dom 𝑅1 | |
| 42 | dffn2 | ⊢ ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V ) | |
| 43 | 4 42 | mpbi | ⊢ 𝑅1 : On ⟶ V |
| 44 | 43 | fdmi | ⊢ dom 𝑅1 = On |
| 45 | 41 44 | sseqtri | ⊢ ( ◡ 𝑅1 “ dom card ) ⊆ On |
| 46 | epweon | ⊢ E We On | |
| 47 | wess | ⊢ ( ( ◡ 𝑅1 “ dom card ) ⊆ On → ( E We On → E We ( ◡ 𝑅1 “ dom card ) ) ) | |
| 48 | 45 46 47 | mp2 | ⊢ E We ( ◡ 𝑅1 “ dom card ) |
| 49 | df-ord | ⊢ ( Ord ( ◡ 𝑅1 “ dom card ) ↔ ( Tr ( ◡ 𝑅1 “ dom card ) ∧ E We ( ◡ 𝑅1 “ dom card ) ) ) | |
| 50 | 40 48 49 | mpbir2an | ⊢ Ord ( ◡ 𝑅1 “ dom card ) |
| 51 | r1sdom | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) | |
| 52 | 25 51 | sylan | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) |
| 53 | cardsdom2 | ⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ∈ dom card ∧ ( 𝑅1 ‘ 𝑥 ) ∈ dom card ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 54 | 34 29 53 | syl2anc | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ ( 𝑅1 ‘ 𝑥 ) ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 55 | 52 54 | mpbird | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 56 | fvco2 | ⊢ ( ( 𝑅1 Fn On ∧ 𝑦 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 57 | 4 27 56 | sylancr | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 58 | 25 | adantr | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ On ) |
| 59 | fvco2 | ⊢ ( ( 𝑅1 Fn On ∧ 𝑥 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) = ( card ‘ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 60 | 4 58 59 | sylancr | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) = ( card ‘ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 61 | 55 57 60 | 3eltr4d | ⊢ ( ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) ) |
| 62 | 61 | ex | ⊢ ( 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) → ( 𝑦 ∈ 𝑥 → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) ) ) |
| 63 | 62 | adantl | ⊢ ( ( 𝑦 ∈ ( ◡ 𝑅1 “ dom card ) ∧ 𝑥 ∈ ( ◡ 𝑅1 “ dom card ) ) → ( 𝑦 ∈ 𝑥 → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ∈ ( ( card ∘ 𝑅1 ) ‘ 𝑥 ) ) ) |
| 64 | 22 50 63 20 | issmo | ⊢ Smo ( card ∘ 𝑅1 ) |