This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022) Avoid ax-11 . (Revised by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnco | ⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐵 𝑧 ↔ 𝑤 𝐵 𝑧 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑤 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 7 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 𝐵 𝑧 ↔ 𝑥 𝐵 𝑤 ) ) | |
| 8 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑤 𝐴 𝑦 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 10 | 6 9 | excomw | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 11 | vex | ⊢ 𝑧 ∈ V | |
| 12 | 11 | elrn | ⊢ ( 𝑧 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑧 ) |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 14 | 2 | brresi | ⊢ ( 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ↔ ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ) |
| 15 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) | |
| 16 | 13 14 15 | 3bitr4ri | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 18 | 4 10 17 | 3bitri | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 19 | 2 | elrn | ⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) |
| 20 | 2 | elrn | ⊢ ( 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 21 | 18 19 20 | 3bitr4i | ⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ) |
| 22 | 21 | eqriv | ⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |