This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way of defining a transitive class. Definition 1.1 of Schloeder p. 1. (Contributed by NM, 20-Mar-2004) Avoid ax-11 . (Revised by BTernaryTau, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftr5 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 3 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) | |
| 4 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) | |
| 5 | 2 3 4 | 3bitr2i | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 7 | dftr2c | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) | |
| 8 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |