This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather beth_A is the same as ( card( R1( _om +o A ) ) ) , since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smobeth | |- Smo ( card o. R1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 | |- card : { x | E. y e. On y ~~ x } --> On |
|
| 2 | ffun | |- ( card : { x | E. y e. On y ~~ x } --> On -> Fun card ) |
|
| 3 | 1 2 | ax-mp | |- Fun card |
| 4 | r1fnon | |- R1 Fn On |
|
| 5 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 6 | 4 5 | ax-mp | |- Fun R1 |
| 7 | funco | |- ( ( Fun card /\ Fun R1 ) -> Fun ( card o. R1 ) ) |
|
| 8 | 3 6 7 | mp2an | |- Fun ( card o. R1 ) |
| 9 | funfn | |- ( Fun ( card o. R1 ) <-> ( card o. R1 ) Fn dom ( card o. R1 ) ) |
|
| 10 | 8 9 | mpbi | |- ( card o. R1 ) Fn dom ( card o. R1 ) |
| 11 | rnco | |- ran ( card o. R1 ) = ran ( card |` ran R1 ) |
|
| 12 | resss | |- ( card |` ran R1 ) C_ card |
|
| 13 | 12 | rnssi | |- ran ( card |` ran R1 ) C_ ran card |
| 14 | frn | |- ( card : { x | E. y e. On y ~~ x } --> On -> ran card C_ On ) |
|
| 15 | 1 14 | ax-mp | |- ran card C_ On |
| 16 | 13 15 | sstri | |- ran ( card |` ran R1 ) C_ On |
| 17 | 11 16 | eqsstri | |- ran ( card o. R1 ) C_ On |
| 18 | df-f | |- ( ( card o. R1 ) : dom ( card o. R1 ) --> On <-> ( ( card o. R1 ) Fn dom ( card o. R1 ) /\ ran ( card o. R1 ) C_ On ) ) |
|
| 19 | 10 17 18 | mpbir2an | |- ( card o. R1 ) : dom ( card o. R1 ) --> On |
| 20 | dmco | |- dom ( card o. R1 ) = ( `' R1 " dom card ) |
|
| 21 | 20 | feq2i | |- ( ( card o. R1 ) : dom ( card o. R1 ) --> On <-> ( card o. R1 ) : ( `' R1 " dom card ) --> On ) |
| 22 | 19 21 | mpbi | |- ( card o. R1 ) : ( `' R1 " dom card ) --> On |
| 23 | elpreima | |- ( R1 Fn On -> ( x e. ( `' R1 " dom card ) <-> ( x e. On /\ ( R1 ` x ) e. dom card ) ) ) |
|
| 24 | 4 23 | ax-mp | |- ( x e. ( `' R1 " dom card ) <-> ( x e. On /\ ( R1 ` x ) e. dom card ) ) |
| 25 | 24 | simplbi | |- ( x e. ( `' R1 " dom card ) -> x e. On ) |
| 26 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 27 | 25 26 | sylan | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> y e. On ) |
| 28 | 24 | simprbi | |- ( x e. ( `' R1 " dom card ) -> ( R1 ` x ) e. dom card ) |
| 29 | 28 | adantr | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( R1 ` x ) e. dom card ) |
| 30 | r1ord2 | |- ( x e. On -> ( y e. x -> ( R1 ` y ) C_ ( R1 ` x ) ) ) |
|
| 31 | 30 | imp | |- ( ( x e. On /\ y e. x ) -> ( R1 ` y ) C_ ( R1 ` x ) ) |
| 32 | 25 31 | sylan | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( R1 ` y ) C_ ( R1 ` x ) ) |
| 33 | ssnum | |- ( ( ( R1 ` x ) e. dom card /\ ( R1 ` y ) C_ ( R1 ` x ) ) -> ( R1 ` y ) e. dom card ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( R1 ` y ) e. dom card ) |
| 35 | elpreima | |- ( R1 Fn On -> ( y e. ( `' R1 " dom card ) <-> ( y e. On /\ ( R1 ` y ) e. dom card ) ) ) |
|
| 36 | 4 35 | ax-mp | |- ( y e. ( `' R1 " dom card ) <-> ( y e. On /\ ( R1 ` y ) e. dom card ) ) |
| 37 | 27 34 36 | sylanbrc | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> y e. ( `' R1 " dom card ) ) |
| 38 | 37 | rgen2 | |- A. x e. ( `' R1 " dom card ) A. y e. x y e. ( `' R1 " dom card ) |
| 39 | dftr5 | |- ( Tr ( `' R1 " dom card ) <-> A. x e. ( `' R1 " dom card ) A. y e. x y e. ( `' R1 " dom card ) ) |
|
| 40 | 38 39 | mpbir | |- Tr ( `' R1 " dom card ) |
| 41 | cnvimass | |- ( `' R1 " dom card ) C_ dom R1 |
|
| 42 | dffn2 | |- ( R1 Fn On <-> R1 : On --> _V ) |
|
| 43 | 4 42 | mpbi | |- R1 : On --> _V |
| 44 | 43 | fdmi | |- dom R1 = On |
| 45 | 41 44 | sseqtri | |- ( `' R1 " dom card ) C_ On |
| 46 | epweon | |- _E We On |
|
| 47 | wess | |- ( ( `' R1 " dom card ) C_ On -> ( _E We On -> _E We ( `' R1 " dom card ) ) ) |
|
| 48 | 45 46 47 | mp2 | |- _E We ( `' R1 " dom card ) |
| 49 | df-ord | |- ( Ord ( `' R1 " dom card ) <-> ( Tr ( `' R1 " dom card ) /\ _E We ( `' R1 " dom card ) ) ) |
|
| 50 | 40 48 49 | mpbir2an | |- Ord ( `' R1 " dom card ) |
| 51 | r1sdom | |- ( ( x e. On /\ y e. x ) -> ( R1 ` y ) ~< ( R1 ` x ) ) |
|
| 52 | 25 51 | sylan | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( R1 ` y ) ~< ( R1 ` x ) ) |
| 53 | cardsdom2 | |- ( ( ( R1 ` y ) e. dom card /\ ( R1 ` x ) e. dom card ) -> ( ( card ` ( R1 ` y ) ) e. ( card ` ( R1 ` x ) ) <-> ( R1 ` y ) ~< ( R1 ` x ) ) ) |
|
| 54 | 34 29 53 | syl2anc | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( ( card ` ( R1 ` y ) ) e. ( card ` ( R1 ` x ) ) <-> ( R1 ` y ) ~< ( R1 ` x ) ) ) |
| 55 | 52 54 | mpbird | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( card ` ( R1 ` y ) ) e. ( card ` ( R1 ` x ) ) ) |
| 56 | fvco2 | |- ( ( R1 Fn On /\ y e. On ) -> ( ( card o. R1 ) ` y ) = ( card ` ( R1 ` y ) ) ) |
|
| 57 | 4 27 56 | sylancr | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( ( card o. R1 ) ` y ) = ( card ` ( R1 ` y ) ) ) |
| 58 | 25 | adantr | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> x e. On ) |
| 59 | fvco2 | |- ( ( R1 Fn On /\ x e. On ) -> ( ( card o. R1 ) ` x ) = ( card ` ( R1 ` x ) ) ) |
|
| 60 | 4 58 59 | sylancr | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( ( card o. R1 ) ` x ) = ( card ` ( R1 ` x ) ) ) |
| 61 | 55 57 60 | 3eltr4d | |- ( ( x e. ( `' R1 " dom card ) /\ y e. x ) -> ( ( card o. R1 ) ` y ) e. ( ( card o. R1 ) ` x ) ) |
| 62 | 61 | ex | |- ( x e. ( `' R1 " dom card ) -> ( y e. x -> ( ( card o. R1 ) ` y ) e. ( ( card o. R1 ) ` x ) ) ) |
| 63 | 62 | adantl | |- ( ( y e. ( `' R1 " dom card ) /\ x e. ( `' R1 " dom card ) ) -> ( y e. x -> ( ( card o. R1 ) ` y ) e. ( ( card o. R1 ) ` x ) ) ) |
| 64 | 22 50 63 20 | issmo | |- Smo ( card o. R1 ) |