This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for which A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011) Avoid ax-13 . (Revised by GG, 19-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issmo.1 | ⊢ 𝐴 : 𝐵 ⟶ On | |
| issmo.2 | ⊢ Ord 𝐵 | ||
| issmo.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) | ||
| issmo.4 | ⊢ dom 𝐴 = 𝐵 | ||
| Assertion | issmo | ⊢ Smo 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmo.1 | ⊢ 𝐴 : 𝐵 ⟶ On | |
| 2 | issmo.2 | ⊢ Ord 𝐵 | |
| 3 | issmo.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) | |
| 4 | issmo.4 | ⊢ dom 𝐴 = 𝐵 | |
| 5 | 4 | feq2i | ⊢ ( 𝐴 : dom 𝐴 ⟶ On ↔ 𝐴 : 𝐵 ⟶ On ) |
| 6 | 1 5 | mpbir | ⊢ 𝐴 : dom 𝐴 ⟶ On |
| 7 | ordeq | ⊢ ( dom 𝐴 = 𝐵 → ( Ord dom 𝐴 ↔ Ord 𝐵 ) ) | |
| 8 | 4 7 | ax-mp | ⊢ ( Ord dom 𝐴 ↔ Ord 𝐵 ) |
| 9 | 2 8 | mpbir | ⊢ Ord dom 𝐴 |
| 10 | 4 | eleq2i | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 11 | 4 | eleq2i | ⊢ ( 𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐵 ) |
| 12 | 10 11 3 | syl2anb | ⊢ ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 13 | 12 | rgen2 | ⊢ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
| 14 | df-smo | ⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) | |
| 15 | 6 9 13 14 | mpbir3an | ⊢ Smo 𝐴 |