This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardf2 | ⊢ card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-card | ⊢ card = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ) | |
| 2 | 1 | funmpt2 | ⊢ Fun card |
| 3 | rabab | ⊢ { 𝑥 ∈ V ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } = { 𝑥 ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } | |
| 4 | 1 | dmmpt | ⊢ dom card = { 𝑥 ∈ V ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } |
| 5 | intexrab | ⊢ ( ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V ) | |
| 6 | 5 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } = { 𝑥 ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } |
| 7 | 3 4 6 | 3eqtr4i | ⊢ dom card = { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } |
| 8 | df-fn | ⊢ ( card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ↔ ( Fun card ∧ dom card = { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ) ) | |
| 9 | 2 7 8 | mpbir2an | ⊢ card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } |
| 10 | simpr | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) | |
| 11 | vex | ⊢ 𝑤 ∈ V | |
| 12 | 10 11 | eqeltrrdi | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ V ) |
| 13 | intex | ⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ V ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ) |
| 15 | rabn0 | ⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) |
| 17 | vex | ⊢ 𝑧 ∈ V | |
| 18 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝑧 ) ) | |
| 19 | 18 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) ) |
| 20 | 17 19 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) |
| 21 | 16 20 | sylibr | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ) |
| 22 | ssrab2 | ⊢ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ⊆ On | |
| 23 | oninton | ⊢ ( ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ On ) | |
| 24 | 22 14 23 | sylancr | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ On ) |
| 25 | 10 24 | eqeltrd | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑤 ∈ On ) |
| 26 | 21 25 | jca | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) ) |
| 27 | 26 | ssopab2i | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } ⊆ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) } |
| 28 | df-card | ⊢ card = ( 𝑧 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) | |
| 29 | df-mpt | ⊢ ( 𝑧 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } | |
| 30 | 28 29 | eqtri | ⊢ card = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } |
| 31 | df-xp | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) } | |
| 32 | 27 30 31 | 3sstr4i | ⊢ card ⊆ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) |
| 33 | dff2 | ⊢ ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On ↔ ( card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ card ⊆ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) ) ) | |
| 34 | 9 32 33 | mpbir2an | ⊢ card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On |