This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issgrp.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issgrp.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | issgrp | ⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrp.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issgrp.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | fvexd | ⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑀 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 6 | fvexd | ⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) ∈ V ) | |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝑀 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑀 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑀 ) ) |
| 9 | 8 2 | eqtr4di | ⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) = ⚬ ) |
| 10 | simplr | ⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵 ) | |
| 11 | id | ⊢ ( 𝑜 = ⚬ → 𝑜 = ⚬ ) | |
| 12 | oveq | ⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) | |
| 13 | eqidd | ⊢ ( 𝑜 = ⚬ → 𝑧 = 𝑧 ) | |
| 14 | 11 12 13 | oveq123d | ⊢ ( 𝑜 = ⚬ → ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
| 15 | eqidd | ⊢ ( 𝑜 = ⚬ → 𝑥 = 𝑥 ) | |
| 16 | oveq | ⊢ ( 𝑜 = ⚬ → ( 𝑦 𝑜 𝑧 ) = ( 𝑦 ⚬ 𝑧 ) ) | |
| 17 | 11 15 16 | oveq123d | ⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
| 18 | 14 17 | eqeq12d | ⊢ ( 𝑜 = ⚬ → ( ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 20 | 10 19 | raleqbidv | ⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 21 | 10 20 | raleqbidv | ⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 22 | 10 21 | raleqbidv | ⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 23 | 6 9 22 | sbcied2 | ⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 24 | 3 5 23 | sbcied2 | ⊢ ( 𝑔 = 𝑀 → ( [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
| 25 | df-sgrp | ⊢ Smgrp = { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } | |
| 26 | 24 25 | elrab2 | ⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |