This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a semigroup. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1sgrp | |- S e. Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | 1 2 3 4 5 6 | smndex1mgm | |- S e. Mgm |
| 8 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 9 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 10 | 8 9 | mgmcl | |- ( ( S e. Mgm /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 11 | 7 10 | mp3an1 | |- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 12 | snex | |- { I } e. _V |
|
| 13 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 14 | snex | |- { ( G ` n ) } e. _V |
|
| 15 | 13 14 | iunex | |- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 16 | 12 15 | unex | |- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 17 | 5 16 | eqeltri | |- B e. _V |
| 18 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 19 | 6 18 | ressplusg | |- ( B e. _V -> ( +g ` M ) = ( +g ` S ) ) |
| 20 | 17 19 | ax-mp | |- ( +g ` M ) = ( +g ` S ) |
| 21 | 20 | eqcomi | |- ( +g ` S ) = ( +g ` M ) |
| 22 | 21 | oveqi | |- ( x ( +g ` S ) y ) = ( x ( +g ` M ) y ) |
| 23 | 1 2 3 4 5 6 | smndex1bas | |- ( Base ` S ) = B |
| 24 | 1 2 3 4 5 | smndex1basss | |- B C_ ( Base ` M ) |
| 25 | 23 24 | eqsstri | |- ( Base ` S ) C_ ( Base ` M ) |
| 26 | ssel | |- ( ( Base ` S ) C_ ( Base ` M ) -> ( x e. ( Base ` S ) -> x e. ( Base ` M ) ) ) |
|
| 27 | ssel | |- ( ( Base ` S ) C_ ( Base ` M ) -> ( y e. ( Base ` S ) -> y e. ( Base ` M ) ) ) |
|
| 28 | 26 27 | anim12d | |- ( ( Base ` S ) C_ ( Base ` M ) -> ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) ) |
| 29 | 25 28 | ax-mp | |- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) ) |
| 30 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 31 | 1 30 18 | efmndov | |- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( x o. y ) ) |
| 32 | 29 31 | syl | |- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` M ) y ) = ( x o. y ) ) |
| 33 | 22 32 | eqtrid | |- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) = ( x o. y ) ) |
| 34 | 11 33 | symggrplem | |- ( ( a e. ( Base ` S ) /\ b e. ( Base ` S ) /\ c e. ( Base ` S ) ) -> ( ( a ( +g ` S ) b ) ( +g ` S ) c ) = ( a ( +g ` S ) ( b ( +g ` S ) c ) ) ) |
| 35 | 34 | rgen3 | |- A. a e. ( Base ` S ) A. b e. ( Base ` S ) A. c e. ( Base ` S ) ( ( a ( +g ` S ) b ) ( +g ` S ) c ) = ( a ( +g ` S ) ( b ( +g ` S ) c ) ) |
| 36 | 8 9 | issgrp | |- ( S e. Smgrp <-> ( S e. Mgm /\ A. a e. ( Base ` S ) A. b e. ( Base ` S ) A. c e. ( Base ` S ) ( ( a ( +g ` S ) b ) ( +g ` S ) c ) = ( a ( +g ` S ) ( b ( +g ` S ) c ) ) ) ) |
| 37 | 7 35 36 | mpbir2an | |- S e. Smgrp |