This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for symggrp and efmndsgrp . Conditions for an operation to be associative. Formerly part of proof for symggrp . (Contributed by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symggrplem.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| symggrplem.p | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) | ||
| Assertion | symggrplem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrplem.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 2 | symggrplem.p | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) | |
| 3 | coass | ⊢ ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑋 + 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑦 ) ∈ 𝐵 ) ) |
| 6 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
| 8 | 5 7 1 | vtocl2ga | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 9 | oveq1 | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 𝑥 + 𝑦 ) = ( ( 𝑋 + 𝑌 ) + 𝑦 ) ) | |
| 10 | coeq1 | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 𝑥 ∘ 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) | |
| 13 | coeq2 | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑦 = 𝑍 → ( ( ( 𝑋 + 𝑌 ) + 𝑦 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑦 ) ↔ ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) ) |
| 15 | 11 14 2 | vtocl2ga | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) |
| 16 | 8 15 | stoic3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) ) |
| 17 | coeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ) | |
| 18 | 4 17 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ) ) |
| 19 | coeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑌 ) ) | |
| 20 | 6 19 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) ) |
| 21 | 18 20 2 | vtocl2ga | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 23 | 22 | coeq1d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) ∘ 𝑍 ) = ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) ) |
| 24 | 16 23 | eqtrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 ∘ 𝑌 ) ∘ 𝑍 ) ) |
| 25 | simp1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 26 | oveq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 + 𝑦 ) = ( 𝑌 + 𝑦 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑌 + 𝑦 ) ∈ 𝐵 ) ) |
| 28 | oveq2 | ⊢ ( 𝑦 = 𝑍 → ( 𝑌 + 𝑦 ) = ( 𝑌 + 𝑍 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑌 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑌 + 𝑍 ) ∈ 𝐵 ) ) |
| 30 | 27 29 1 | vtocl2ga | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 32 | oveq2 | ⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( 𝑋 + 𝑦 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) | |
| 33 | coeq2 | ⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( 𝑋 ∘ 𝑦 ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑦 = ( 𝑌 + 𝑍 ) → ( ( 𝑋 + 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ↔ ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) ) |
| 35 | 18 34 2 | vtocl2ga | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑍 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) |
| 36 | 25 31 35 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) ) |
| 37 | coeq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∘ 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ) | |
| 38 | 26 37 | eqeq12d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ↔ ( 𝑌 + 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ) ) |
| 39 | coeq2 | ⊢ ( 𝑦 = 𝑍 → ( 𝑌 ∘ 𝑦 ) = ( 𝑌 ∘ 𝑍 ) ) | |
| 40 | 28 39 | eqeq12d | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑌 + 𝑦 ) = ( 𝑌 ∘ 𝑦 ) ↔ ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) ) |
| 41 | 38 40 2 | vtocl2ga | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) |
| 42 | 41 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑌 ∘ 𝑍 ) ) |
| 43 | 42 | coeq2d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∘ ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) ) |
| 44 | 36 43 | eqtrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 ∘ ( 𝑌 ∘ 𝑍 ) ) ) |
| 45 | 3 24 44 | 3eqtr4a | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |