This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for smndex1mnd and smndex1id . (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1mndlem | |- ( X e. B -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | elun | |- ( X e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( X e. { I } \/ X e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
|
| 8 | elsni | |- ( X e. { I } -> X = I ) |
|
| 9 | 1 2 3 | smndex1iidm | |- ( I o. I ) = I |
| 10 | coeq2 | |- ( X = I -> ( I o. X ) = ( I o. I ) ) |
|
| 11 | id | |- ( X = I -> X = I ) |
|
| 12 | 9 10 11 | 3eqtr4a | |- ( X = I -> ( I o. X ) = X ) |
| 13 | coeq1 | |- ( X = I -> ( X o. I ) = ( I o. I ) ) |
|
| 14 | 9 13 11 | 3eqtr4a | |- ( X = I -> ( X o. I ) = X ) |
| 15 | 12 14 | jca | |- ( X = I -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 16 | 8 15 | syl | |- ( X e. { I } -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 17 | eliun | |- ( X e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) X e. { ( G ` n ) } ) |
|
| 18 | fveq2 | |- ( n = k -> ( G ` n ) = ( G ` k ) ) |
|
| 19 | 18 | sneqd | |- ( n = k -> { ( G ` n ) } = { ( G ` k ) } ) |
| 20 | 19 | eleq2d | |- ( n = k -> ( X e. { ( G ` n ) } <-> X e. { ( G ` k ) } ) ) |
| 21 | 20 | cbvrexvw | |- ( E. n e. ( 0 ..^ N ) X e. { ( G ` n ) } <-> E. k e. ( 0 ..^ N ) X e. { ( G ` k ) } ) |
| 22 | elsni | |- ( X e. { ( G ` k ) } -> X = ( G ` k ) ) |
|
| 23 | 1 2 3 4 | smndex1igid | |- ( k e. ( 0 ..^ N ) -> ( I o. ( G ` k ) ) = ( G ` k ) ) |
| 24 | 1 2 3 | smndex1ibas | |- I e. ( Base ` M ) |
| 25 | 1 2 3 4 | smndex1gid | |- ( ( I e. ( Base ` M ) /\ k e. ( 0 ..^ N ) ) -> ( ( G ` k ) o. I ) = ( G ` k ) ) |
| 26 | 24 25 | mpan | |- ( k e. ( 0 ..^ N ) -> ( ( G ` k ) o. I ) = ( G ` k ) ) |
| 27 | 23 26 | jca | |- ( k e. ( 0 ..^ N ) -> ( ( I o. ( G ` k ) ) = ( G ` k ) /\ ( ( G ` k ) o. I ) = ( G ` k ) ) ) |
| 28 | coeq2 | |- ( X = ( G ` k ) -> ( I o. X ) = ( I o. ( G ` k ) ) ) |
|
| 29 | id | |- ( X = ( G ` k ) -> X = ( G ` k ) ) |
|
| 30 | 28 29 | eqeq12d | |- ( X = ( G ` k ) -> ( ( I o. X ) = X <-> ( I o. ( G ` k ) ) = ( G ` k ) ) ) |
| 31 | coeq1 | |- ( X = ( G ` k ) -> ( X o. I ) = ( ( G ` k ) o. I ) ) |
|
| 32 | 31 29 | eqeq12d | |- ( X = ( G ` k ) -> ( ( X o. I ) = X <-> ( ( G ` k ) o. I ) = ( G ` k ) ) ) |
| 33 | 30 32 | anbi12d | |- ( X = ( G ` k ) -> ( ( ( I o. X ) = X /\ ( X o. I ) = X ) <-> ( ( I o. ( G ` k ) ) = ( G ` k ) /\ ( ( G ` k ) o. I ) = ( G ` k ) ) ) ) |
| 34 | 27 33 | imbitrrid | |- ( X = ( G ` k ) -> ( k e. ( 0 ..^ N ) -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) ) |
| 35 | 22 34 | syl | |- ( X e. { ( G ` k ) } -> ( k e. ( 0 ..^ N ) -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) ) |
| 36 | 35 | impcom | |- ( ( k e. ( 0 ..^ N ) /\ X e. { ( G ` k ) } ) -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 37 | 36 | rexlimiva | |- ( E. k e. ( 0 ..^ N ) X e. { ( G ` k ) } -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 38 | 21 37 | sylbi | |- ( E. n e. ( 0 ..^ N ) X e. { ( G ` n ) } -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 39 | 17 38 | sylbi | |- ( X e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 40 | 16 39 | jaoi | |- ( ( X e. { I } \/ X e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 41 | 7 40 | sylbi | |- ( X e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |
| 42 | 41 5 | eleq2s | |- ( X e. B -> ( ( I o. X ) = X /\ ( X o. I ) = X ) ) |