This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sinhalfpi and coshalfpi . (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinhalfpilem | ⊢ ( ( sin ‘ ( π / 2 ) ) = 1 ∧ ( cos ‘ ( π / 2 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | ⊢ 0 < 1 | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | 2 3 | ltnsymi | ⊢ ( 0 < 1 → ¬ 1 < 0 ) |
| 5 | 1 4 | ax-mp | ⊢ ¬ 1 < 0 |
| 6 | lt0neg1 | ⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < - 1 ) ) | |
| 7 | 3 6 | ax-mp | ⊢ ( 1 < 0 ↔ 0 < - 1 ) |
| 8 | 5 7 | mtbi | ⊢ ¬ 0 < - 1 |
| 9 | pire | ⊢ π ∈ ℝ | |
| 10 | 9 | rehalfcli | ⊢ ( π / 2 ) ∈ ℝ |
| 11 | 2re | ⊢ 2 ∈ ℝ | |
| 12 | pipos | ⊢ 0 < π | |
| 13 | 2pos | ⊢ 0 < 2 | |
| 14 | 9 11 12 13 | divgt0ii | ⊢ 0 < ( π / 2 ) |
| 15 | 4re | ⊢ 4 ∈ ℝ | |
| 16 | pigt2lt4 | ⊢ ( 2 < π ∧ π < 4 ) | |
| 17 | 16 | simpri | ⊢ π < 4 |
| 18 | 9 15 17 | ltleii | ⊢ π ≤ 4 |
| 19 | 11 13 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 20 | ledivmul | ⊢ ( ( π ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) ) | |
| 21 | 9 11 19 20 | mp3an | ⊢ ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) |
| 22 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 23 | 22 | breq2i | ⊢ ( π ≤ ( 2 · 2 ) ↔ π ≤ 4 ) |
| 24 | 21 23 | bitr2i | ⊢ ( π ≤ 4 ↔ ( π / 2 ) ≤ 2 ) |
| 25 | 18 24 | mpbi | ⊢ ( π / 2 ) ≤ 2 |
| 26 | 0xr | ⊢ 0 ∈ ℝ* | |
| 27 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( ( π / 2 ) ∈ ( 0 (,] 2 ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 < ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) ) ) | |
| 28 | 26 11 27 | mp2an | ⊢ ( ( π / 2 ) ∈ ( 0 (,] 2 ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 < ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) ) |
| 29 | 10 14 25 28 | mpbir3an | ⊢ ( π / 2 ) ∈ ( 0 (,] 2 ) |
| 30 | sin02gt0 | ⊢ ( ( π / 2 ) ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ ( π / 2 ) ) ) | |
| 31 | 29 30 | ax-mp | ⊢ 0 < ( sin ‘ ( π / 2 ) ) |
| 32 | breq2 | ⊢ ( ( sin ‘ ( π / 2 ) ) = - 1 → ( 0 < ( sin ‘ ( π / 2 ) ) ↔ 0 < - 1 ) ) | |
| 33 | 31 32 | mpbii | ⊢ ( ( sin ‘ ( π / 2 ) ) = - 1 → 0 < - 1 ) |
| 34 | 8 33 | mto | ⊢ ¬ ( sin ‘ ( π / 2 ) ) = - 1 |
| 35 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 36 | resincl | ⊢ ( ( π / 2 ) ∈ ℝ → ( sin ‘ ( π / 2 ) ) ∈ ℝ ) | |
| 37 | 10 36 | ax-mp | ⊢ ( sin ‘ ( π / 2 ) ) ∈ ℝ |
| 38 | 37 31 | gt0ne0ii | ⊢ ( sin ‘ ( π / 2 ) ) ≠ 0 |
| 39 | 38 | neii | ⊢ ¬ ( sin ‘ ( π / 2 ) ) = 0 |
| 40 | 2ne0 | ⊢ 2 ≠ 0 | |
| 41 | 40 | neii | ⊢ ¬ 2 = 0 |
| 42 | 9 | recni | ⊢ π ∈ ℂ |
| 43 | 2cn | ⊢ 2 ∈ ℂ | |
| 44 | 42 43 40 | divcan2i | ⊢ ( 2 · ( π / 2 ) ) = π |
| 45 | 44 | fveq2i | ⊢ ( sin ‘ ( 2 · ( π / 2 ) ) ) = ( sin ‘ π ) |
| 46 | 10 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 47 | sin2t | ⊢ ( ( π / 2 ) ∈ ℂ → ( sin ‘ ( 2 · ( π / 2 ) ) ) = ( 2 · ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ) ) | |
| 48 | 46 47 | ax-mp | ⊢ ( sin ‘ ( 2 · ( π / 2 ) ) ) = ( 2 · ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ) |
| 49 | 45 48 | eqtr3i | ⊢ ( sin ‘ π ) = ( 2 · ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ) |
| 50 | sinpi | ⊢ ( sin ‘ π ) = 0 | |
| 51 | 49 50 | eqtr3i | ⊢ ( 2 · ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ) = 0 |
| 52 | sincl | ⊢ ( ( π / 2 ) ∈ ℂ → ( sin ‘ ( π / 2 ) ) ∈ ℂ ) | |
| 53 | 46 52 | ax-mp | ⊢ ( sin ‘ ( π / 2 ) ) ∈ ℂ |
| 54 | coscl | ⊢ ( ( π / 2 ) ∈ ℂ → ( cos ‘ ( π / 2 ) ) ∈ ℂ ) | |
| 55 | 46 54 | ax-mp | ⊢ ( cos ‘ ( π / 2 ) ) ∈ ℂ |
| 56 | 53 55 | mulcli | ⊢ ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ∈ ℂ |
| 57 | 43 56 | mul0ori | ⊢ ( ( 2 · ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) ) = 0 ↔ ( 2 = 0 ∨ ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) = 0 ) ) |
| 58 | 51 57 | mpbi | ⊢ ( 2 = 0 ∨ ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) = 0 ) |
| 59 | 41 58 | mtpor | ⊢ ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) = 0 |
| 60 | 53 55 | mul0ori | ⊢ ( ( ( sin ‘ ( π / 2 ) ) · ( cos ‘ ( π / 2 ) ) ) = 0 ↔ ( ( sin ‘ ( π / 2 ) ) = 0 ∨ ( cos ‘ ( π / 2 ) ) = 0 ) ) |
| 61 | 59 60 | mpbi | ⊢ ( ( sin ‘ ( π / 2 ) ) = 0 ∨ ( cos ‘ ( π / 2 ) ) = 0 ) |
| 62 | 39 61 | mtpor | ⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 63 | 62 | oveq1i | ⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = ( 0 ↑ 2 ) |
| 64 | sq0 | ⊢ ( 0 ↑ 2 ) = 0 | |
| 65 | 63 64 | eqtri | ⊢ ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) = 0 |
| 66 | 65 | oveq2i | ⊢ ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + 0 ) |
| 67 | sincossq | ⊢ ( ( π / 2 ) ∈ ℂ → ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = 1 ) | |
| 68 | 46 67 | ax-mp | ⊢ ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 2 ) ) ↑ 2 ) ) = 1 |
| 69 | 66 68 | eqtr3i | ⊢ ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + 0 ) = 1 |
| 70 | 53 | sqcli | ⊢ ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) ∈ ℂ |
| 71 | 70 | addridi | ⊢ ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) + 0 ) = ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) |
| 72 | 35 69 71 | 3eqtr2ri | ⊢ ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) = ( 1 ↑ 2 ) |
| 73 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 74 | 53 73 | sqeqori | ⊢ ( ( ( sin ‘ ( π / 2 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( ( sin ‘ ( π / 2 ) ) = 1 ∨ ( sin ‘ ( π / 2 ) ) = - 1 ) ) |
| 75 | 72 74 | mpbi | ⊢ ( ( sin ‘ ( π / 2 ) ) = 1 ∨ ( sin ‘ ( π / 2 ) ) = - 1 ) |
| 76 | 75 | ori | ⊢ ( ¬ ( sin ‘ ( π / 2 ) ) = 1 → ( sin ‘ ( π / 2 ) ) = - 1 ) |
| 77 | 34 76 | mt3 | ⊢ ( sin ‘ ( π / 2 ) ) = 1 |
| 78 | 77 62 | pm3.2i | ⊢ ( ( sin ‘ ( π / 2 ) ) = 1 ∧ ( cos ‘ ( π / 2 ) ) = 0 ) |