This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a product is zero, one of its factors must be zero. Theorem I.11 of Apostol p. 18. (Contributed by NM, 7-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul0or.1 | ⊢ 𝐴 ∈ ℂ | |
| mul0or.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | mul0ori | ⊢ ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul0or.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | mul0or.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | mul0or | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |