This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sinhalfpi and coshalfpi . (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinhalfpilem | |- ( ( sin ` ( _pi / 2 ) ) = 1 /\ ( cos ` ( _pi / 2 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | |- 0 < 1 |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | 2 3 | ltnsymi | |- ( 0 < 1 -> -. 1 < 0 ) |
| 5 | 1 4 | ax-mp | |- -. 1 < 0 |
| 6 | lt0neg1 | |- ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) |
|
| 7 | 3 6 | ax-mp | |- ( 1 < 0 <-> 0 < -u 1 ) |
| 8 | 5 7 | mtbi | |- -. 0 < -u 1 |
| 9 | pire | |- _pi e. RR |
|
| 10 | 9 | rehalfcli | |- ( _pi / 2 ) e. RR |
| 11 | 2re | |- 2 e. RR |
|
| 12 | pipos | |- 0 < _pi |
|
| 13 | 2pos | |- 0 < 2 |
|
| 14 | 9 11 12 13 | divgt0ii | |- 0 < ( _pi / 2 ) |
| 15 | 4re | |- 4 e. RR |
|
| 16 | pigt2lt4 | |- ( 2 < _pi /\ _pi < 4 ) |
|
| 17 | 16 | simpri | |- _pi < 4 |
| 18 | 9 15 17 | ltleii | |- _pi <_ 4 |
| 19 | 11 13 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 20 | ledivmul | |- ( ( _pi e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) ) |
|
| 21 | 9 11 19 20 | mp3an | |- ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) |
| 22 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 23 | 22 | breq2i | |- ( _pi <_ ( 2 x. 2 ) <-> _pi <_ 4 ) |
| 24 | 21 23 | bitr2i | |- ( _pi <_ 4 <-> ( _pi / 2 ) <_ 2 ) |
| 25 | 18 24 | mpbi | |- ( _pi / 2 ) <_ 2 |
| 26 | 0xr | |- 0 e. RR* |
|
| 27 | elioc2 | |- ( ( 0 e. RR* /\ 2 e. RR ) -> ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) ) |
|
| 28 | 26 11 27 | mp2an | |- ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) |
| 29 | 10 14 25 28 | mpbir3an | |- ( _pi / 2 ) e. ( 0 (,] 2 ) |
| 30 | sin02gt0 | |- ( ( _pi / 2 ) e. ( 0 (,] 2 ) -> 0 < ( sin ` ( _pi / 2 ) ) ) |
|
| 31 | 29 30 | ax-mp | |- 0 < ( sin ` ( _pi / 2 ) ) |
| 32 | breq2 | |- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> ( 0 < ( sin ` ( _pi / 2 ) ) <-> 0 < -u 1 ) ) |
|
| 33 | 31 32 | mpbii | |- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> 0 < -u 1 ) |
| 34 | 8 33 | mto | |- -. ( sin ` ( _pi / 2 ) ) = -u 1 |
| 35 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 36 | resincl | |- ( ( _pi / 2 ) e. RR -> ( sin ` ( _pi / 2 ) ) e. RR ) |
|
| 37 | 10 36 | ax-mp | |- ( sin ` ( _pi / 2 ) ) e. RR |
| 38 | 37 31 | gt0ne0ii | |- ( sin ` ( _pi / 2 ) ) =/= 0 |
| 39 | 38 | neii | |- -. ( sin ` ( _pi / 2 ) ) = 0 |
| 40 | 2ne0 | |- 2 =/= 0 |
|
| 41 | 40 | neii | |- -. 2 = 0 |
| 42 | 9 | recni | |- _pi e. CC |
| 43 | 2cn | |- 2 e. CC |
|
| 44 | 42 43 40 | divcan2i | |- ( 2 x. ( _pi / 2 ) ) = _pi |
| 45 | 44 | fveq2i | |- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( sin ` _pi ) |
| 46 | 10 | recni | |- ( _pi / 2 ) e. CC |
| 47 | sin2t | |- ( ( _pi / 2 ) e. CC -> ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) ) |
|
| 48 | 46 47 | ax-mp | |- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
| 49 | 45 48 | eqtr3i | |- ( sin ` _pi ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
| 50 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 51 | 49 50 | eqtr3i | |- ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 |
| 52 | sincl | |- ( ( _pi / 2 ) e. CC -> ( sin ` ( _pi / 2 ) ) e. CC ) |
|
| 53 | 46 52 | ax-mp | |- ( sin ` ( _pi / 2 ) ) e. CC |
| 54 | coscl | |- ( ( _pi / 2 ) e. CC -> ( cos ` ( _pi / 2 ) ) e. CC ) |
|
| 55 | 46 54 | ax-mp | |- ( cos ` ( _pi / 2 ) ) e. CC |
| 56 | 53 55 | mulcli | |- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) e. CC |
| 57 | 43 56 | mul0ori | |- ( ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) ) |
| 58 | 51 57 | mpbi | |- ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) |
| 59 | 41 58 | mtpor | |- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 |
| 60 | 53 55 | mul0ori | |- ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 <-> ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) ) |
| 61 | 59 60 | mpbi | |- ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) |
| 62 | 39 61 | mtpor | |- ( cos ` ( _pi / 2 ) ) = 0 |
| 63 | 62 | oveq1i | |- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = ( 0 ^ 2 ) |
| 64 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 65 | 63 64 | eqtri | |- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = 0 |
| 66 | 65 | oveq2i | |- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) |
| 67 | sincossq | |- ( ( _pi / 2 ) e. CC -> ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 ) |
|
| 68 | 46 67 | ax-mp | |- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 |
| 69 | 66 68 | eqtr3i | |- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = 1 |
| 70 | 53 | sqcli | |- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) e. CC |
| 71 | 70 | addridi | |- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = ( ( sin ` ( _pi / 2 ) ) ^ 2 ) |
| 72 | 35 69 71 | 3eqtr2ri | |- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) |
| 73 | ax-1cn | |- 1 e. CC |
|
| 74 | 53 73 | sqeqori | |- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) ) |
| 75 | 72 74 | mpbi | |- ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) |
| 76 | 75 | ori | |- ( -. ( sin ` ( _pi / 2 ) ) = 1 -> ( sin ` ( _pi / 2 ) ) = -u 1 ) |
| 77 | 34 76 | mt3 | |- ( sin ` ( _pi / 2 ) ) = 1 |
| 78 | 77 62 | pm3.2i | |- ( ( sin ` ( _pi / 2 ) ) = 1 /\ ( cos ` ( _pi / 2 ) ) = 0 ) |